

70-762.96q

Number: 70-762 Passing Score: 800 Time Limit: 120 min

Website: <u>https://vceplus.com</u> VCE to PDF Converter: <u>https://vceplus.com/vce-to-pdf/</u> Facebook: <u>https://www.facebook.com/VCE.For.All.VN/</u> Twitter : <u>https://twitter.com/VCE_Plus</u>

https://vceplus.com/

Developing SQL Databases

Exam A

QUESTION 1

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is exactly the same in each question in this series.

www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

You have a database that contains the following tables: BlogCategory, BlogEntry, ProductReview, Product, and SalesPerson. The tables were created using the following Transact SQL statements:


```
CREATE TABLE BlogCategory
(
     CategoryID int NOT NULL PRIMARY KEY,
     CategoryName nvarchar (20)
);
CREATE TABLE BlogEntry
(
     Entry int NOT PRIMARY KEY,
     Entrytitle nvarchar (50),
     Category int NOT NULL FOREIGN KEY REFERENCES BlogCategory
(CategoryID)
);
CREATE TABLE dbo.ProductReview
0
     ProductReviewID IDENTITY(1,1) PRIMARY KEY,
     Product int NOT NULL,
                                              CEplus
     Review varchar (1000) NOT NULL
);
CREATE TABLE dbo.Product
     ProductID int Identity(1,1) PRIMARY KEY,
     Name varchar(1000) NOT NULL
);
CREATE TABLE dbo.SalesPerson
     SalesPersonID int IDENTITY(1,1) PRIMARY KEY,
     Name varchar (1000) NOT NULL,
     SalesID Money
)
```

You must modify the ProductReview Table to meet the following requirements:

1. The table must reference the ProductID column in the Product table

2. Existing records in the ProductReview table must not be validated with the Product table.

3. Deleting records in the Product table must not be allowed if records are referenced by the ProductReview table.

4. Changes to records in the Product table must propagate to the ProductReview table.

You also have the following databse tables: Order, ProductTypes, and SalesHistory, The transact-SQL statements for these tables are not available.

You must modify the Orders table to meet the following requirements:

- 1. Create new rows in the table without granting INSERT permissions to the table.
- 2. Notify the sales person who places an order whether or not the order was completed.

You must add the following constraints to the SalesHistory table:

- a constraint on the SaleID column that allows the field to be used as a record identifier
- a constant that uses the ProductID column to reference the Product column of the ProductTypes table
- a constraint on the CategoryID column that allows one row with a null value in the column a constraint that limits the SalePrice column to values greater than four

Finance department users must be able to retrieve data from the SalesHistory table for sales persons where the value of the SalesYTD column is above a certain threshold.

You plan to create a memory-optimized table named SalesOrder. The table must meet the following requirments:

- The table must hold 10 million unique sales orders.
- The table must use checkpoints to minimize I/O operations and must not use transaction logging. Data loss is acceptable.

Performance for queries against the SalesOrder table that use Where clauses with exact equality operations must be optimized.

____.com

You need to modify the design of the Orders table.

What should you create?

- A. a stored procedure with the RETURN statement
- B. a FOR UPDATE trigger
- C. an AFTER UPDATE trigger
- D. a user defined function

Correct Answer: D Section: (none) Explanation

Explanation/Reference: Explanation:

Requirements: You must modify the Orders table to meet the following requirements:

1. Create new rows in the table without granting INSERT permissions to the table.

2. Notify the sales person who places an order whether or not the order was completed. References: https://msdn.microsoft.com/en-us/library/ms186755.aspx

QUESTION 2

You have a database that is experiencing deadlock issues when users run queries. You need to ensure that all deadlocks are recorded in XML format.

What should you do?

https://vceplus.com/

.com

- A. Create a Microsoft SQL Server Integration Services package that uses sys.dm_tran_locks.
- B. Enable trace flag 1224 by using the Database Cpmsistency Checker(BDCC).
- C. Enable trace flag 1222 in the startup options for Microsoft SQL Server.
- D. Use the Microsoft SQL Server Profiler Lock: Deadlock event class.

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation:

When deadlocks occur, trace flag 1204 and trace flag 1222 return information that is captured in the SQL Server error log. Trace flag 1204 reports deadlock information formatted by each node involved in the deadlock. Trace flag 1222 formats deadlock information, first by processes and then by resources.

The output format for Trace Flag 1222 only returns information in an XML-like format.

References: <u>https://technet.microsoft.com/en-</u> us/library/ms178104(v=sql.105).aspx

QUESTION 3

You are developing an application that connects to a database. The application runs the following jobs:

Job	Transact-SQL statement	Description
JobA	Exec uspDeletePrevRecords	The stored procedure deletes all records from a table named tblBalanceTransactions that were created before the current month by using a single DELETE statement. Approximately 10 million records are deleted each time you run this stored procedure
JobB	Exec uspUpdateCurRecords	This stored procedure updates records in the tblBalanceTransaction table that were created in the current month. Only a few hundred records are updated each time you run this stored procedure.

The READ_COMMITTED_SNAPSHOT database option is set to OFF, and auto-content is set to ON. Within the stored procedures, no explicit transactions are defined.

If JobB starts before JobA, it can finish in seconds. If JobA starts first, JobB takes a long time to complete.

You need to use Microsoft SQL Server Profiler to determine whether the blocking that you observe in JobB is caused by locks acquired by JobA. Which trace event class in the Locks event category should you use?

- A. LockAcquired
- B. LockCancel
- C. LockDeadlock
- D. LockEscalation

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

The Lock: Acquired event class indicates that acquisition of a lock on a resource, such as a data page, has been achieved.

The Lock: Acquired and Lock: Released event classes can be used to monitor when objects are being locked, the type of locks taken, and for how long the locks were retained. Locks retained for long periods of time may cause contention issues and should be investigated.

QUESTION 4

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is exactly the same in each question in this series.

You have a database named DB1 that contains the following tables: Customer, CustomerToAccountBridge, and CustomerDetails. The three tables are part of the Sales schema. The database also contains a schema named Website. You create the Customer table by running the following Transact-SQL statement:

```
CREATE TABLE Customer
1
   CustomerNumber int NOT NULL,
   CustomerName varchar(50) NOT NULL,
   CreateDate date NOT NULL,
   Gender bit,
   Address varchar(50)
   City varchar(50)
   State char(2),
   CustomerStatus bit NOT NULL,
   MaritalStatus bit,
   Segment varchar(5),
                                           ČEplus
   CountryCode char(2),
   Birthday date,
   PostalCode char(5),
   PhoneNumber varchar(20),
   Account1 char(7),
   Account1Status bit,
   Account2 char(7),
   Account2Status bit,
   CONSTRAINT PK Customer PRIMARY KEY CLUSTERED (CustomerNumber)
);
```

The value of the CustomerStatus column is equal to one for active customers. The value of the Account1Status and Account2Status columns are equal to one for active accounts. The following table displays selected columns and rows from the Customer table.

Customer ID	CustomerName	Gender	Account1	Account1Status	Account2	Account2Status
101	Name A	0	0001001	0	0001002	1
102	Name B	1	0002001	1	0002002	0
103	Name C	0	0003001	1	0003002	1


```
CREATE PROCEDURE uspUpdateCustomerSummary
@CustomerId INT
AS
BEGIN
   SET NOCOUNT on;
   UPDATE CustomerDetails SET TotalDepositAccountCOunt - TotalDepositAccountCount + 1 WHERE CustomerID = @CustomerIE
   BEGIN TRAN;
       BEGIN TRY
           UPDATE CustomerDetails SET TotalAccountCount = TotalAccountCount + 1 WHERE CustomerID = @CustomerID;
       END TRY
       BEGIN CATCH
           IF @@TRANCOUNT > 0
               ROLLBACK TRAN;
       END CATCH
       IF @@TRANCOUNT > 0
           COMMIT TRAN;
```

You plan to create a view named Website.Customer and a view named Sales.FemaleCustomers. Website.Customer must meet the following requirements:

- 2. Allow changes to the columns that the view references. Modified data must be visible through the view.
- 3. Prevent the view from being published as part of Microsoft SQL Server replication. Sales. Female. Customers must meet the following requirements:
- 1. Allow users access to the CustomerName, Address, City, State and PostalCode columns.

2. Prevent changes to the columns that the view references.

3. Only allow updates through the views that adhere to the view filter.

You have the following stored procedures: spDeleteCustAcctRelationship and spUpdateCustomerSummary. The spUpdateCustomerSummary stored procedure was created by running the following Transacr-SQL statement:

You run the spUpdateCustomerSummary stored procedure to make changes to customer account summaries. Other stored procedures call the spDeleteCustAcctRelationship to delete records from the CustomerToAccountBridge table.

You must update the design of the Customer table to meet the following requirements.

- 1. You must be able to store up to 50 accounts for each customer.
- 2. Users must be able to retrieve customer information by supplying an account number.
- 3. Users must be able to retrieve an account number by supplying customer information. You need to implement the design changes while minimizing data redundancy. What should you do?

^{1.} Allow users access to the CustomerName and CustomerNumber columns for active customers.

- A. Split the table into three separate tables. Include the AccountNumber and CustomerID columns in the first table. Include the CustomerName and Gender columns in the second table. Include the AccountStatus column in the third table.
- B. Split the table into two separate tables. Include AccountNumber, CustomerID, CustomerName and Gender columns in the first table. Include the AccountNumber and AccountStatus columns in the second table.
- C. Split the table into two separate tables, Include the CustomerID and AccountNumber columns in the first table. Include the AccountNumber, AccountStatus, CustomerName and Gender columns in the second table.
- D. Split the table into two separate tables, Include the CustomerID, CustomerName and Gender columns in the first table. Include AccountNumber, AccountStatus and CustomerID columns in the second table.

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation: Two tables is enough.CustomerID must be in both tables.

QUESTION 5

Note: This question is part of a series of questions that use the same scenario. For your convenience, the scenario is repeated in each question. Each question presents a different goal and answer choices, but the text of the scenario is exactly the same in each question in this series.

You have a database named DB1 that contains the following tables: Customer, CustomerToAccountBridge, and CustomerDetails. The three tables are part of the Sales schema. The database also contains a schema named Website. You create the Customer table by running the following Transact-SQL statement:


```
CREATE TABLE Customer
1
   CustomerNumber int NOT NULL,
   CustomerName varchar(50) NOT NULL,
   CreateDate date NOT NULL,
   Gender bit,
   Address varchar(50)
   City varchar(50)
   State char(2),
   CustomerStatus bit NOT NULL,
   MaritalStatus bit,
   Segment varchar(5),
   CountryCode char(2),
   Birthday date,
   PostalCode char(5),
   PhoneNumber varchar(20),
   Account1 char(7),
                                                CEplus
   Account1Status bit,
   Account2 char(7),
   Account2Status bit,
   CONSTRAINT PK Customer PRIMARY KEY CLUSTERED (CustomerNumber)
);
```

The value of the CustomerStatus column is equal to one for active customers. The value of the Account1Status and Account2Status columns are equal to one for active accounts. The following table displays selected columns and rows from the Customer table.

Customer ID	CustomerName	Gender	Account1	Account1Status	Account2	Account2Status
101	Name A	0	0001001	0	0001002	1
102	Name B	1	0002001	1	0002002	0
103	Name C	0	0003001	1	0003002	1

You plan to create a view named Website.Customer and a view named Sales.FemaleCustomers.

Website.Customer must meet the following requirements:

- Allow users access to the CustomerName and CustomerNumber columns for active customers.
- Allow changes to the columns that the view references. Modified data must be visible through the view.
- Prevent the view from being published as part of Microsoft SQL Server replication.

Sales.Female.Customers must meet the following requirements:

- Allow users access to the CustomerName, Address, City, State and PostalCode columns.
- Prevent changes to the columns that the view references.
- Only allow updates through the views that adhere to the view filter.

You have the following stored procedures: spDeleteCustAcctRelationship and spUpdateCustomerSummary. The spUpdateCustomerSummary stored procedure was created by running the following Transacr-SQL statement:

```
CREATE PROCEDURE uspUpdateCustomerSummary
@CustomerId INT
AS
BEGIN
    SET NOCOUNT on;
   UPDATE CustomerDetails SET TotalDepositAccountCount - TotalDepositAccountCount + 1 WHERE CustomerID = @CustomerID;
    BEGIN TRAN;
           IN TRY
UPDATE CustomerDetails SET TotalAccountCount = TotalAccount
       BEGIN TRY
                                                                         Count + 1 WHERE CustomerID = @CustomerID;
       END TRY
       BEGIN CATCH
           IF @@TRANCOUNT > 0
               ROLLBACK TRAN;
       END CATCH
       IF @@TRANCOUNT > 0
           COMMIT TRAN;
```

You run the uspUpdateCustomerSummary stored procedure to make changes to customer account summaries. Other stored procedures call the spDeleteCustAcctRelationship to delete records from the CustomerToAccountBridge table.

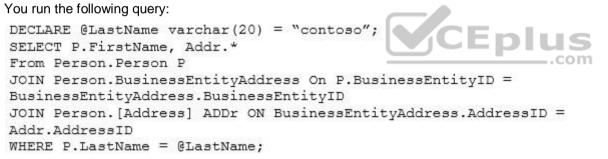
When you start uspUpdateCustomerSummary, there are no active transactions. The procedure fails at the second update statement due to a CHECK constraint violation on the TotalDepositAccountCount column.

What is the impact of the stored procedure on the CustomerDetails table?

- A. A. The value of the TotalAccountCount column decreased.
- B. The value of the TotalDepositAccountCount column is not changed.
- C. The statement that modifies TotalDepositAccountCount is excluded from the transaction. www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

- D. The value of the TotalAccountCount column is not changed.
- E. The value of the TotalDepositAccountCount column is increased.
- F. The statement that modifies TotalAccountCount column is excluded from the transaction.
- G. The value of the TotalDepositAcountCount column is decreased.

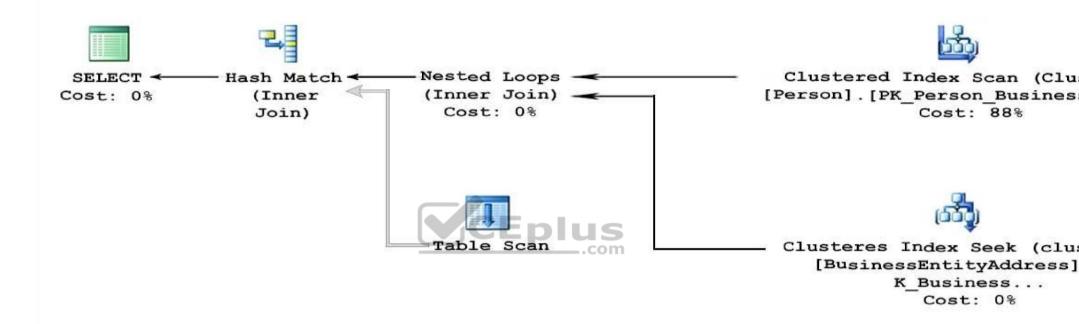
Correct Answer: D Section: (none) Explanation


Explanation/Reference:

Explanation:

QUESTION 6

Note: This question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question os independent of the other questions in this series. Information and details provided in a question apply only to that question.


You have a database named DB1. There is no memory-optimized filegroup in the database.

The following image displays the execution plan the query optimizer generates for this query:

Users frequently run the same query with different values for the local variable @lastName. The table named Person is persisted on disk. You need to create an index on the Person.Person table that meets the following requirements:

1. All users must be able to benefit from the index.

2. FirstName must be added to the index as an included column.

What should you do?

- A. Create a clustered index on the table.
- B. Create a nonclustered index on the table.
- C. Create a nonclustered filtered index on the table.
- D. Create a clustered columnstore index on the table.
- E. Create a nonclustered columnstore index on the table Questions & Answers Online Courses Convert VCE to PDF VCEplus.com

F. Create a hash index on the table.

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

By including nonkey columns, you can create nonclustered indexes that cover more queries. This is because the nonkeycolumns have the following benefits: They can be data types not allowed as index key columns.

They are not considered by the Database Engine when calculating the number of index key columns or index key size.

QUESTION 7

Note: The question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other question in the series. Information and details provided in a question apply only to that question.

You have a reporting database that includes a non-partitioned fact table named Fact_Sales. The table is persisted on disk.

Users report that their queries take a long time to complete. The system administrator reports that the table takes too much space in the database. You observe that there are no indexes defined on the table, and many columns have repeating values.

___.com

You need to create the most efficient index on the table, minimize disk storage and improve reporting query performance.

What should you do?

- A. Create a clustered index on the table.
- B. Create a nonclustered index on the table.
- C. Create a nonclustered filtered index on the table.
- D. Create a clustered columnstore index on the table.
- E. Create a nonclustered columnstore index on the table.
- F. Create a hash index on the table.

Correct Answer: D Section: (none)

Explanation

Explanation/Reference:

Explanation:

The columnstore index is the standard for storing and querying largedata warehousing fact tables. It uses column-based data storage and query processing to achieve up to 10x query performance gains in your data warehouse over traditional row-oriented storage, and up to 10x data compression over the uncompressed data size.

A clustered columnstore index is the physical storage for the entire table.

QUESTION 8

Note: The question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other question in the series. Information and details provided in a question apply only to that question.

You have a database named DB1. The database does not use a memory-optimized filegroup. The database contains a table named Table1. The table must support the following workloads:

Workload	Type	Description
Reporting	Existing	The reporting workload must scan most of the records in the table to aggregate on a number of columns. A clustered columnstore index is already created on the table to support this workload.
OLTP	New	The OLTP workload must support 3,000 transactions per second. Rows are identified by using two columns. The filter is variant on one of the two columns while constant on the other. Only a small number of records with a few columns are returned by the query.

You need to add the most efficient index to support the new OLTP workload, while not deteriorating the existing Reporting query performance.

What should you do?

- A. Create a clustered index on the table.
- B. Create a nonclustered index on the table.
- C. Create a nonclustered filtered index on the table.
- D. Create a clustered columnstore index on the table.
- E. Create a nonclustered columnstore index on the table.
- F. Create a hash index on the table.

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation:

A filtered index is an optimized nonclustered index, especially suited to cover queries that select from a well-defined subset of data. It uses a filter predicate to index a portion of rows in the table. A well-designed filtered index can improve query performance, reduce index maintenance costs, and reduce index storage costs compared with full-table indexes.

References:https://technet.microsoft.com/en-us/library/cc280372(v=sql.105).aspx

QUESTION 9

Note: The question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other question in the series. Information and details provided in a question apply only to that question.

You have a database named DB1. The database does not have a memory optimized filegroup. You create a table by running the following Transact-SQL statement:

```
CREATE TABLE tblTransaction(

[TransactionID] [int] NOT NULL PRIMARY KEY,

[TransactionDate] [date] NOT NULL,

[AccountId] [int] NOT NULL,

[ValueType] [char](3) NOT NULL,

[Amount] [decimal](20,2) NULL

);
```

The table is currently used for OLTP workloads. The analytics user group needs to perform real-time operational analytics that scan most of the records in the table to aggregate on a number of columns.

You need to add the most efficient index to support the analytics workload without changing the OLTP application.

What should you do?

- A. Create a clustered indexon the table.
- B. Create a nonclustered index on the table.
- C. Create a nonclustered filtered index on the table.
- D. Create a clustered columnstore index on the table.
- E. Create a nonclustered columnstore index on the table.
- F. Create a hash index on the table.

Correct Answer: E Section: (none) Explanation

Explanation/Reference:

Explanation:

A nonclustered columnstore index enables real-time operational analytics in which the OLTP workload uses the underlying clustered index, while analytics run concurrently on the columnstore index.

Columnstore indexes can achieve up to 100xbetter performance on analytics and data warehousing workloads and up to 10x better data compression than traditional rowstore indexes. These recommendations will help your queries achieve the very fast query performance that columnstore indexes are designed to provide.

References: https://msdn.microsoft.com/en-us/library/gg492088.aspx

QUESTION 10 DRAG DROP

You are analyzing the performance of a database environment. You suspect there are several missing indexes in the current database. You need to return a prioritized list of the missing indexes on the current database.

How should you complete the Transact-SQL statement? To answer, drag the appropriate Transact-SQL segments to the correct locations. Each Transact-SQL segment may be used once, more than once or not at all. You may need to drag the split bar between panes or scroll to view content.

Select and Place:

Transact-SQL segments	Answer Area
sysion db missing index group stats	CONVIEW.mane (, may) that is expected that juyer, upon this there pre-burn is expression).
bys.dn_do_missing_index_detsils	an invade
system_db_missing_index_stats	<pre>/mids/requiries courses COM / mids/requiries courses / mids/requiries / mids/requiries</pre>
tol_mandle	2 Wild 2 (11) Wild (X) (Wild
pian hanale	<pre>rK00 Prandett 301 statement</pre>
group hand a	of strider group function INMER (3DER system of missing index details RS and CM ang index subdic - nit, index bundle INMER JOIR systemports on XITT (malock CX mid.spject to issuespect to WHERE start, group handle IN (
	situation the (5060) the mean situation of the o
	FROM ICONSECT-SCL Statement (MITS (ACLOCKS) ORDER 25 (Avd_to.dl_astr_cost * dvq_astr_indect) * (astr_seens 4 Ober Scent D130)

Correct Answer:

Transact-SQL scaments

Annual Anna

sysidm db missing index group state

bye,dn do missing index details

system db missing index stats

tol handle

plan 1	2			
group	1000	5.		

ocontrol countaine char_Char_presprod * angunes_ mm 1) * from peaks or over_arens; ag imtagr

- / miduretuilly relumns
- / mid.inequality_columns
- , midarechidad on mone

1638 - syndrijb_nissing_inder_crup_tlets - AS nij As statu 1886: Shohy Syndrij _nissing__uder_nien AS nij As statustichen film die solle at nutridex, group, handle, THERE JIE System as missing index details as and CM mig.index mandre hid. index hundle. THEFT JOFN systempetts on XITT (malock) SN multiplect to a solargest to WORR state, group handle IN (

101 1221 the 190601 prop hoodid.

CEplus

group switch to disting index group state - WITE (aploaks) SKDER B1 (avg_to.al_aser_cost * avg_aser_incact) * (astr_secus + uper_scant DiSC(

Section: (none) Explanation

Explanation/Reference:

Box 1: sys.db db missing index group stats

Box 2: group_handle

Example: The following query determines which missing indexes comprise a particular missing index group, and displays their column details. For the sake of this example, the missing index group handle is 24.

SELECT migs.group handle, mid.*

FROM sys.dm db missing index group stats AS migs INNER JOIN sys.dm db missing index groups AS mig

ON (migs.group handle = mig.index group handle)

INNER JOIN sys.dm_db_missing_index_details AS mid

ON (mig.index handle = mid.index handle)

WHERE migs.group_handle = 24;

Box 3: sys.db db missing index group stats

The sys.db_db_missing_index_group_stats table include the required columns for the subquery: avg_total_user_cost and avg_user_impact.

Example: Find the 10 missing indexes with the highest anticipated improvement for user queries

The following query determines which 10 missing indexes would produce the highest anticipated cumulative improvement, in descending order, for user queries. SELECT TOP 10 *

FROM sys.dm db missing index group stats

ORDER BY avg total user cost * avg user impact * (user seeks + user scans)DESC;

QUESTION 11

You use Microsoft SQL Server Profile to evaluate a query named Query1. The Profiler report indicates the following issues:

- At each level of the query plan, a low total number of rows are processed.
- The query uses many operations. This results in a high overall cost for the query.

You need to identify the information that will be useful for the optimizer.

What should you do?

- A. Start a SQL Server Profiler trace for the event class Auto Stats in the Performance event category.
- B. Create one Extended Events session with the sqlserver.missing_column_statistics event added.
- C. Start a SQL Server Profiler trace for the event class Soft Warnings in the Errors and Warnings event category.
- D. Create one Extended Events session with the sqlserver.missing_join_predicate event added.

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

The Missing Join Predicate event class indicates that a query is being executed that has no join predicate. This could result in a long-running query.

QUESTION 12

You are experiencing performance issues with the database server.

You need to evaluate schema locking issues, plan cache memory pressure points, and backup I/O problems.

What should you create?

- A. a System Monitor report
- B. a sys.dm_exec_query_stats dynamic management view query C. a sys.dm_exec_session_wait_stats dynamicmanagement view query
- D. an Activity Monitor session in Microsoft SQL Management Studio.

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation:

sys.dm_exec_session_wait_stats returns information about all the waits encountered by threads that executed for each session. You can use this view to diagnose performance issues with the SQL Server session and also with specific queries and batches.

Note: SQL Server wait stats are, at their highest conceptual level, grouped into two broad categories: signal waits and resource waits. A signal wait is accumulated by processes running on SQL Server which are waiting for a CPU to become available (so called because the process has "signaled" that it is ready for processing). A resource wait is accumulated by processes running on SQL Server which are waiting for a SQL Server which are waiting for a specific resource to become available, such as waiting for the release of a lock on a specific record.

QUESTION 13

Note: this question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in the series. Information and details provided in a question apply only to that question.

You are developing an application to track customer sales.

You need to create a database object that meets the following requirements:

- Return a value of 0 if data inserted successfully into the Customers table.
- Return a value of 1 if data is not inserted successfully into the Customers table.
- Support logic that is written by using managed code.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. DDL trigger
- F. scalar-valued function
- G. table-valued function

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

DML triggers is a special type of stored procedure that automatically takes effect when a data manipulation language (DML) event takes place that affects the table or view defined in the trigger. DML events include INSERT, UPDATE, or DELETE statements.DML triggers can be used to enforce business rules and data integrity, query other tables, and include complex Transact-SQL statements.

A CLR trigger is a type of DDL trigger. A CLR Trigger can be either an AFTER or INSTEAD OF trigger. A CLR trigger canalso be a DDL trigger. Instead of executing a Transact-SQL stored procedure, a CLR trigger executes one or more methods written in managed code that are members of an assembly created in the .NET Framework and uploaded in SQL Server.

QUESTION 14

Note: this question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in the series. Information and details provided in a question apply only to that question.

You are developing an application to track customer sales.

You need to create a database object that meets the following requirements:

- Return a value of 0 if data inserted successfully into the Customers table.
- Return a value of 1 if data is not inserted successfully into the Customers table.
- Support TRY...CATCH error handling- Be written by using Transact-SQL statements.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. scalar-valued function
- F. table-valued function

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

DML triggers is a special type of stored procedure that automatically takes effect when a data manipulation language (DML) event takes place that affects the table or view defined in the trigger. DML events include INSERT, UPDATE, or DELETE statements. DML triggers can be used to enforce business rules and data integrity, query other tables, and include complex Transact-SQL statements.

References: https://msdn.microsoft.com/en-us/library/ms178110.aspx

QUESTION 15

Note: this question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in the series. Information and details provided in a question apply only to that question.

You are developing an application to track customer sales.

You need to create a database object that meets the following requirements:

- Launch when table data is modified.
- Evaluate the state a table before and after a data modification and take action based on the difference.
- Prevent malicious or incorrect table data operations.
- Prevent changes that violate referential integrity by cancelling the attempted data modification.
- Run managed code packaged in an assembly that is created in the Microsoft.NET Framework and located into Microsoft SQL Server.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. scalar-valued function
- F. table-valued function

Correct Answer: B Section: (none) Explanation Explanation/Reference:

Explanation:

You can create a database object inside SQL Server that is programmed in an assembly created in the Microsoft .NET Framework common language runtime (CLR). Database objects that can leverage the rich programmingmodel provided by the CLR include DML triggers, DDL triggers, stored procedures, functions, aggregate functions, and types.

CEplus

Creating a CLR trigger (DML or DDL) in SQL Server involves the following steps:

Define the trigger as a class in a .NETFramework-supported language. For more information about how to program triggers in the CLR, see CLR Triggers. Then, compile the class to build an assembly in the .NET Framework using the appropriate language compiler.

Register the assembly in SQL Server using the CREATE ASSEMBLY statement. For more information about assemblies in SQL Server, see Assemblies (Database Engine).

Create the trigger that references the registered assembly.

References: https://msdn.microsoft.com/en-us/library/ms179562.aspx

QUESTION 16

Note: this question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in the series. Information and details provided in a question apply only to that question.

You are developing and application to track customer sales.

You need to return the sum of orders that have been finalized, given a specified order identifier. This value will be used in other Transact-SQL statements. You need to create a database object.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. scalar-valued function
- F. table-valued function

Correct Answer: F Section: (none) Explanation

Explanation/Reference:

Explanation: User-defined scalar functions return a single data value of the type defined in the RETURNS clause.

References:https://technet.microsoft.com/en-us/library/ms177499(v=sql.105).aspx

QUESTION 17

You have a view that includes an aggregate.

You must be able to change the values of columns in the view. The changes must be reflected in the tables that the view uses. You need to ensure that you can update the view.

What should you create?

- A. table-valued function
- B. a schema-bound view
- C. a partitioned view
- D. a DML trigger

Correct Answer: B Section: (none) Explanation

Explanation/Reference: Explanation:

When you use the SchemaBinding keyword while creating a view or function you bind the structure of any underlying tables or views. Itmeans that as long as that schemabound object exists as a schemabound object (ie you don't remove schemabinding) you are limited in changes that can be made to the tables or views that it refers to.

References: https://sqlstudies.com/2014/08/06/schemabinding-what-why/

QUESTION 18

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three Microsoft SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor and optimize the SQL Server to maximize throughput, response time, and overall SQL performance.

You need to identify previous situations where a modification has prevented queries from selecting data in tables.

What should you do?

- A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create a sys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: G Section: (none) Explanation

Explanation/Reference:

Explanation:

sys.dm_os_wait_stats returns information about all the waits encountered by threads that executed. You can use this aggregated view to diagnose performance issues with SQL Server and also with specific queries and batches.

QUESTION 19

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three Microsoft SQL Server instances. There are many SQL jobs that run during off-peak hours.

You observe that many deadlocks appear to be happening during specific times of the day.

You need to monitor the SQL environment and capture the information about the processes that are causing the deadlocks. Captured information must be viewable as the queries are running.

you do?

- A. A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a PerformanceMonitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create a sys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: F Section: (none) Explanation

Explanation/Reference:

Explanation:

To view deadlock information, the Database Engine provides monitoring tools in the form of two trace flags, and the deadlock graph event in SQL Server Profiler.

Trace Flag 1204 and Trace Flag 1222

www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

When deadlocks occur, trace flag 1204 and trace flag 1222 return information that is captured in the SQL Server error log. Trace flag 1204 reports deadlock information formatted by each nodeinvolved in the deadlock. Trace flag 1222 formats deadlock information, first by processes and then by resources. It is possible to enable bothtrace flags to obtain two representations of the same deadlock event.

References: https://technet.microsoft.com/en-us/library/ms178104(v=sql.105).aspx

QUESTION 20

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three Microsoft SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor the SQL Server instances in real time and optimize the server to maximize throughput, response time, and overall SQL performance.

What should you do?

- A. A. Create asys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create a sys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

sys.dm_exec_sessions returns one row per authenticated session on SQL Server. sys.dm_exec_sessions is a server-scope view that shows information about all active user connections and internal tasks. This information includes client version, client program name, client login time, login user, current session setting, and more. Use sys.dm_exec_sessions to first view the current system load and to identify a session of interest, and then learn more information about that session by using other dynamic management views or dynamic management functions.

Examples of use include finding long-running cursors, and finding idle sessions that have open transactions.

QUESTION 21

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three Microsoft SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor the SQL Server instances in real time and optimize the server to maximize throughput, response time, and overall SQL performance.

You need to ensure that the performance of each instance is consistent for the same queried and query plans.

What should you do?

- A. A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create asys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: H Section: (none)

Explanation

Explanation/Reference:

Explanation: Advanced Viewing of Target Data from Extended Events in SQL Server

When your event session is currently active, you might want to watch the event data in real time, as it is received by the target. Management > Extended Events > Sessions > [your-session] > Watch Live Data.

The query_post_execution_showplan extended event enables you to see the actual query plan in the SQL Server Management Studio (SSMS) UI. When the Details pane is visible, you can see a graph of the query plan on the Query Plan tab. By hovering over a node on the query plan, you can see a list of property names and their values for the node.

Displaying 30 Events	linesterre					
name	timestamp			Clustered Index	Seek (Cluste	
query_post_execution_s	showpl 2016-06-13 15:27:19.19	959838		Scanning a particular range of	rows from a o	
query_post_execution_	showpl 2016-06-13 15:28:05.87	754644				
query post execution	showpl 2016-06-13 15:29:10.88	23873		Physical Operation	C	
				Logical Operation Actual Execution Mode	C	
vent: query_post_execution_	showplan (2016-06-13 15:27:16.97	781660)		Estimated Execution Mode		
Details Query Plan				Storage		
Assessment and a second se				Actual Number of Rows		
Query 1: Query co	ost (relative to the	batch): 100%		Actual Number of Batches		
				Estimated Operator Cost		
111111	B		plus 🔂 📙	Estimated I/O Cost		
<u> </u>	Nested Loops		.COM Nested Loops	Estimated Subtree Cost	Estimated Subtree Cost	
Compute Scalar	(Left Outer Join)	Compute Scalar Cost: 0 %	(Left Outer Join)	Estimated CPU Cost	Estimated CPU Cost	
Cost: 0 %	Cost: 0 %	Cost: 0 %	Cost: 0 %	Estimated Number of Execut	tions	
				Number of Executions		
				Estimated Number of Rows		
				Estimated Row Size		
				Actual Rebinds		
				Actual Rewinds		
				Ordered Node ID		
				Node ID		
(Object		
				[InMemTest2].[sys].[sysclsobjs	[.[clst] [s]	
				Output List	1. Faire of East	
				[InMemTest2].[sys].[sysclsobjs].name	
				Seek Predicates		
				Seek Keys[1]: Prefix: [InMemTe	est2].[svs].[s	
				[InMemTest2].[sys].[sysclsobjs		
	www.veeplus.com Erec.Ou	loctions & Answers Onl	ne Courses - Convert VCE to PDF - V	Carla Original (II) Mar Tar (2)		
	www.vcepius.com - Free Qu	iesuons & Answers - On	The Courses - Convert VCE to PDF - V	[nsid])		

References: <u>https://msdn.microsoft.com/en-us/library/mt752502.aspx</u>

QUESTION 22

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor the SQL Server instances in real time and optimize the server to maximize throughput, response time, and overall SQL performance.

You need to collect query performance data while minimizing the performance impact on the SQL Server.

What should you do?

- A. A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create a sys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation: SQL Server Data Collector is a feature for performance monitoring and tuning available in SQL Server Management Studio.

Integration Services packages transform and load the collected data into the Microsoft Data Warehouse database.

Collection sets are defined and deployed on a server instance and can be run independently of each other. Each collection set can be applied to a target that matches the target types of all the collector types that are part of a collection set. The collection set is run by a SQL Server Agent job or jobs, and data is uploaded to the management data warehouse on a predefined schedule.

Predefined data collection sets include:

The Query Statistics data collection set collects information about query statistics, activity, execution plans and text on the SQL Server instance. It does not store
all executed statements, only 10 worst performing ones.

• Disk Usage data collection set collects information about disk space used by both data and log files for all databases on the SQL Server instance, growth trends, and average day growth. Etc.

References: <u>http://www.sqlshack.com/sql-server-performance-monitoring-data-collector/</u>

QUESTION 23

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor the SQL Server instances in real time and optimize the server to maximize throughput, response time, and overall SQL performance.

You need to create a baseline set of metrics to report how the computer running SQL Server operates under normal load. The baseline must include the resource usage associated with the server processes.

What should you do?

- A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory' query.
- F. Create a SQL Profiler trace.
- G. Create asys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation: sys.dm_os_memory_objects returns memory objects that are currently allocated by SQL Server. You can usesys.dm_os_memory_objects to analyze memory use and to identify possible memory leaks.

Example: The following example returns the amount of memory allocated by each memory object type. SELECT SUM (pages_in_bytes) as 'Bytes Used', type FROMsys.dm_os_memory_objects GROUP BY type ORDER BY 'Bytes Used' DESC; GO

QUESTION 24

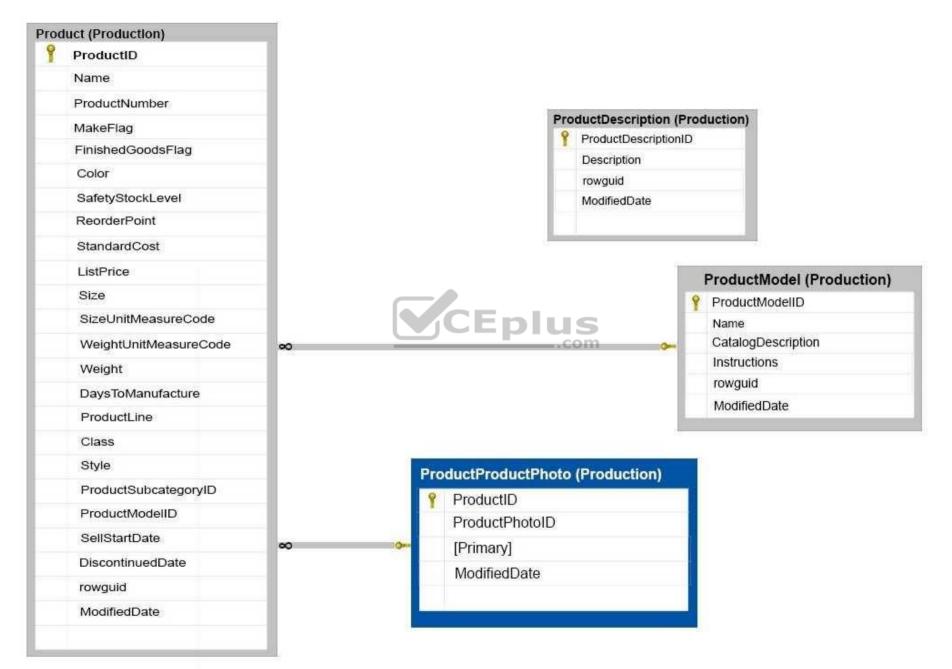
HOTSPOT

You are developing an app that allows users to query historical company financial data. You are reviewing email messages from the various stakeholders for a project.

The message from the security officer is shown in the Security Officer Email exhibit below.

TO: Database developer From: Security Officer Subject: SQL object requirements

We need to simplify the security settings for the SQL objects. Having a assign permissions at every object in SQL is tedious and leads to a problem. Documentation is also more difficult when we have to assign permissions at multiple levels. We need to assign the required permissions at one object, even though that object may be obtaining from other objects.


The message from the sales manager is shown in the Sales Manager Email exhibit below.

TO: Database developer From: Sales Manager Subject: Needed SQL objects

When creating objects for our use, they need to be flexible. We will be changing the base infrastructure frequently. We need components in SQL that will provide backward compatibility to our front end applications as the environments change so that do not need to modify the front end applications. We need objects that can provide a filtered set of the data. The data may be coming from multiple tables and we need an object that can provide access to all of the data through a single object reference.

This is an example of the types of data we need to be able to have queries against without having to change the front end applications.

The message from the web developer is shown in the Web Developer Email exhibit below.

TO: Database developer From: Web Developer Subject: SQL Object component

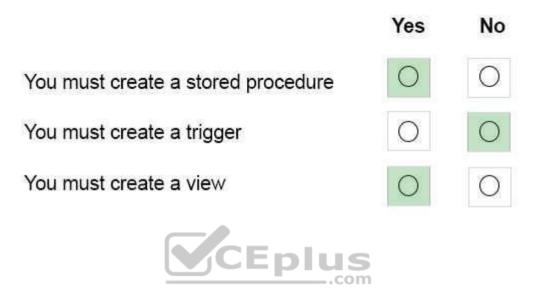
Whatever you will be configuring to provide access to data in SQL, it needs to connect using the items referenced in this interface. We have been using this for a long time, and we cannot change this from end easily. Whatever objects are going to be used in SQL they must work using object types this interface references.

Database Name:	↓
Table Name:	↓
Column Name:	▼

You need to create one or more objects that meet the needs of the security officer, the sales manager and the web developer. For each of the following statements, select Yes if the statement is true. Otherwise, select No.

Hot Area:

Answer Area


	Yes	No
You must create a stored procedure	Ο	0
You must create a trigger	0	0
You must create a view	0	0

Correct Answer:

www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

Answer Area

Section: (none) Explanation

Explanation/Reference:

* Stored procedure: Yes

A stored procedure to implement the following:

Whatever you will be configuring to provide access to data in SQL, it needs to connect using the items referenced in this interface. We have been using this for a long time, and we cannot change this from end easily. Whatever objects are going to be used in SQL they must work using object types this interface references.

* Trigger: No

No requirements are related to actions taken when changing the data.

* View: Yes

Because: We need objects that can provide a filtered set of the data. The data may be coming from multiple tables and we need an object that can provide access to all of the data through a single object reference.

QUESTION 25

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stored information about the employees of your company. You need to implement the following auditing rules for the Employees table:

- Record any changes that are made to the data in the Employees table.

- Customize the data recorded by the audit operations.

Solution: You implement a user-defined function on the Employees table.

Does the solution meet the goal?

A. Yes

B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

SQL Server 2016 provides two features that track changes to data in a database: change data capture and change tracking. These features enable applications to determine the DML changes (insert, update, and delete operations) that were made to user tables in a database.

__.com

Change data is made available to change data capture consumers through table-valued functions (TVFs).

References:https://msdn.microsoft.com/en-us/library/cc645858.aspx

QUESTION 26

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stored information about the employees of your company.

You need to implement the following auditing rules for the Employees table:

- Record any changes that are made to the data in the Employees table.

- Customize the data recorded by the audit operations.

Solution: You implement a check constraint on the Employees table.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation: Check constraints cannot be used to track changes in a table.

References: https://msdn.microsoft.com/en-us/library/bb933994.aspx

QUESTION 27

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stored information about the employees of your company.

You need to implement the following auditing rules for the Employees table:

- Record any changes that are made to the data in the Employees table.
- Customize the data recorded by the audit operations.

Solution: You implement a stored procedure on the Employees table.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation: We should use table-valued functions, not procedures, to customize the recorded change data.

References: https://msdn.microsoft.com/en-us/library/cc645858.aspx

QUESTION 28

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

Your company has employees in different regions around the world.

You need to create a database table that stores the following employee attendance information:

- Employee ID

- date and time employee checked in to work

- date and time employee checked out of work

Date and time information must be time zone aware and must not store fractional seconds.

Solution: You run the following Transact-SQL statement:

CREATE TABLE [dbo].[EmployeeAttendance](EmployeeID int NOT NULL, DateChekedIn datetimeofset NOT NULL, DateCheclOut datetimeofset NOT NULL)

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Datetimeoffset, not datetimeofset, defines a date that is combined with a time of a day that has time zone awareness and is based on a 24-hourclock. Syntaxis: datetimeoffset [(fractional seconds precision)] For the use "datetimeoffset", the Fractional seconds precision is 7.

References: https://msdn.microsoft.com/en-us/library/bb630289.aspx

QUESTION 29

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

Your company has employees in different regions around the world.

You need to create a database table that stores the following employee attendance information: • Employee ID • date and time employee checked in to work • date and time employee checked out of work

Date and time information must be time zone aware and must not store fractional seconds.

Solution: You run the following Transact-SQL statement:

CREATE TABLE [dbo].[EmployeeAttendance](EmployeeID int NOT NULL, DateChekedIn datetime2 NOT NULL, DateCheclOut datetime2 NOT NULL)

Does the solution meet the goal?

A. Yes

B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Datetime2 stores fractional seconds.

Datetime2 defines adate that is combined with a time of day that is based on 24-hour clock. datetime2 can be considered as an extension of the existing datetime type that has a larger date range, a larger default fractional precision, and optional user-specified precision.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/data-types/datetime2-transact-sql?view=sql-server-2017 https://msdn.microsoft.com/en-us/library/bb677335.aspx</u>

QUESTION 30

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

Your company has employees in different regions around the world. You need to create a database table that stores the following employee attendance information: • Employee ID • date and time employee checked in to work • date and time employee checked out of work

https://vceplus.com/

Date and time information must be time zone aware and must not store fractional seconds.

Solution: You run the following Transact-SQL statement:

CREATE TABLE [dbo].[EmployeeAttendance](EmployeeID int NOT NULL, DateCheckedIn datetimeoffset(0) NOT NULL, DateCheckedOut datetimeoffset(0) NOT NULL)

Does the solution meet the goal?

A. Yes

B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

Datetimeoffset defines a date that is combined with a time of a day that has time zone awareness and is based on a 24-hour clock. Syntaxis: datetimeoffset [(fractional seconds precision)]

Forthe use "datetimeoffset(0)", the Fractional seconds precision is 0, which is required here. References: https://msdn.microsoft.com/en-

us/library/bb630289.aspx

QUESTION 31

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

The Account table was created using the following Transact-SQL statement:

CREATE TABLE Account (AccountNumber int NOT NULL, ProductCode char(2) NOT NULL, Status tinyint NOT NULL, OpenDate date NOT NULL, CloseDate date, Balance decimal(15,2), AvailableBalance decimal(15,2));

There are more than 1 billion records in the Account table. The Account Number column uniquely identifies each account. The ProductCode column has 100 different values. The values are evenly distributed in the table. Table statistics are refreshed and up to date.

You frequently run the following Transact-SQL SELECT statements: SELECT ProductCode, SUM(Balance) AS TotalSUM FROM Account WHERE ProductCode <> `CD' GROUP BY ProductCode; SELECT AccountNumber, Balance FROM Account WHERE ProductCode = `CD'

You must avoid table scans when you run the queries. You need to create one or more indexes for the table. Solution: You run the following Transact-SQL statement:

CREATE NONCLUSTERES INDEX PK_Account(AccountNumber); CREATE NONCLUSTERED INDEX IX_Account_productCode On Account(ProductCode) INCLUDE (Balance);

Does the solution meet the goal?

A. Yes

B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Create a clustered index on the AccountNumber column as it is unique, not a non nonclustered one. References: https://msdn.microsoft.com/en-

us/library/ms190457.aspx

QUESTION 32

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

The Account table was created using the following Transact-SQL statement:

```
CREATE TABLE Account
(
    AccountNumber int NOT NULL,
    ProductCode char(2) NOT NULL,
    Status tinyint NOT NULL,
    OpenDate date NOT NULL,
    CloseDate date,
    Balance decimal(15,2),
    AvailableBalance decimal(15,2)
);
```


There are more than 1 billion records in the Account table. The Account Number column uniquely identifies each account. The ProductCode column has 100 different values. The values are evenly distributed in the table. Table statistics are refreshed and up to date.

You frequently run the following Transact-SQL SELECT statements:

```
SELECT ProductCode, SUM(Balance) AS TotalSUM FROM Account WHERE ProductCode
<> `CD' GROUP BY ProductCode;
SELECT AccountNumber, Balance FROM Account WHERE Production = `CD'
```

You must avoid table scans when you run the queries. You need to create one or more indexes for the table. Solution: You run the following Transact-SQL statement: www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

CREATE CLUSTERED INDEX PK_Account ON Account(ProductCode);

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation: We need an index on the productCode column as well.

References: https://msdn.microsoft.com/en-us/library/ms190457.aspx

QUESTION 33

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

The Account table was created using the following Transact-SQL statement:

```
CREATE TABLE Account
(
    AccountNumber int NOT NULL,
    ProductCode char(2) NOT NULL,
    Status tinyint NOT NULL,
    OpenDate date NOT NULL,
    CloseDate date,
    Balance decimal(15,2),
    AvailableBalance decimal(15,2)
);
```

There are more than 1 billion records in the Account table. The Account Number column uniquely identifies each account. The ProductCode column has 100 different values. The values are evenly distributed in the table. Table statistics are refreshed and up to date.

You frequently run the following Transact-SQL SELECT statements:

SELECT ProductCode, SUM(Balance) AS TotalSUM FROM Account WHERE ProductCode <> 'CD' GROUP BY ProductCode; SELECT AccountNumber, Balance FROM Account WHERE ProductCode = 'CD'

You must avoid table scans when you run the queries. You need to create one or more indexes for the table. Solution: You run the following Transact-SQL statement:

CREATE CLUSTERED INDEX PK_Account On Account(AccountNumber); CREATE NONCLUSTERED INDEX IX_Account_ProductCode On Account(ProductCode) INCLLUDE (Balance);

Does the solution meet the goal?

A. Yes B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation: Create a clustered index on theAccountNumber column as it is unique. Create a nonclustered index that includes the ProductCode column.

References: https://msdn.microsoft.com/en-us/library/ms190457.aspx

QUESTION 34

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You need to create a stored procedure that updates the Customer, CustomerInfo, OrderHeader, and OrderDetails tables in order.

You need to ensure that the stored procedure:

Runs within a single transaction.

Commits updates to the Customer and CustomerInfo tables regardless of the status of updates to the OrderHeader and OrderDetail tables.
 Commits changes to all four tables when updates to all four tables are successful.

Solution: You create a stored procedure that includes the following Transact-SQL segment:

```
BEGIN TRY

BEGIN TRAN

UPDATE Customer ...

UPDATE CustomerInfo ...

UPDATE OrderHeader ...

UPDATE OrderDetail ...

COMMIT TRAN

END TRAN

BEGIN CATCH

IF XACT_STATE() = 1

ROLLBACK TRAN

END CATCH
```

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation: All four tables are updated in a single transaction.

Need to handle the case where the first two updates (OrderHeader, OrderDetail) are successful, but either the 3rd or the 4th (OrderHeader, OrderDetail) fail. Can add a variable in the BEGIN TRY block, and test the variable in the BEGIN CATCH block.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/language-elements/begin-transaction-transact-sql</u>

QUESTION 35

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You need to create a stored procedure that updates the Customer, CustomerInfo, OrderHeader, and OrderDetails tables in order.

https://vceplus.com/

www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

You need to ensure that the stored procedure:

• Runs within a single transaction.

Commits updates to the Customer and CustomerInfo tables regardless of the status of updates to the OrderHeader and OrderDetail tables.
 Commits changes to all four tables when updates to all four tables are successful.

Solution: You create a stored procedure that includes the following Transact-SQL segment:

```
DECLARE @CustomerComplete bit = 0
BEGIN TRY
    BEGIN TRAN
        UPDATE Customer ...
        UPDATE CustomerInfo ...
        SET @CustomerComplete = 1
        SAVE TRAN TR1
        UPDATE OrderHeader ...
                                               CEplus
        UPDATE OrderDetail ...
    COMMIT TRAN
END TRAN
BEGIN CATCH
    IF (@CustomerComplete = 1) AND (XACT STATE() = 1)
    BEGIN
        COMMIT TRAN
    END
    ELSE IF XACT STATE() = 1
        ROLLBACK TRAN
END CATCH
```

Does the solution meet the goal?

A. Yes B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

Need to handle the case where the first two updates (OrderHeader, OrderDetail) are successful, but either the 3rd or the 4th (OrderHeader, OrderDetail) fail. We add the @CustomerComplete variable in the BEGIN TRY block, and test it in the BEGIN CATCH block.

Note: XACT_STATE indicates whether the request has an active user transaction, and whether the transaction is capable of being committed. XACT_STATE =1: the current request has an active user transaction. The request can perform any actions, including writing data and committing the transaction.

References:

https://docs.microsoft.com/en-us/sql/t-sql/functions/xact-state-transact-sql

QUESTION 36

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stores information about the employees of your company.

You need to implement and enforce the following business rules:

- Limit the values that are accepted by the Salary column.
- Prevent salaries less than \$15,000 and greater than \$300,000 from being entered.
- Determine valid values by using logical expressions.
- Do not validate data integrity when running DELETE statements.

Solution: You implement a check constraint on the table.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference: Explanation:

References: <u>https://en.wikipedia.org/wiki/Check_constraint</u>

QUESTION 37

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stores information about the employees of your company.

You need to implement and enforce the following business rules:

- . Limit the values that are accepted by the Salary column.
- Prevent salaries less than \$15,000 and greater than \$300,000 from being entered.
- Determine valid values by using logical expressions.
- Do not validate data integrity when running DELETE statements.

Solution: You implement a FOR UPDATE trigger on the table.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference: Explanation:

References: http://stackoverflow.com/questions/16081582/difference-between-for-update-of-and-for-update

QUESTION 38

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a database that contains a table named Employees. The table stores information about the employees of your company.

You need to implement and enforce the following business rules:

- Limit the values that are accepted by the Salary column.
- Prevent salaries less than \$15,000 and greater than \$300,000 from being entered.
- Determine valid values by using logical expressions.
- Do not validate data integrity when running DELETE statements.

Solution: You implement cascading referential integrity constraints on the table.

Does the solution meet the goal? www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

A Yes B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference: Explanation:

References: https://technet.microsoft.com/en-us/library/ms186973(v=sql.105).aspx

QUESTION 39

Note: This guestion is part of a series of guestions that present the same scenario. Each guestion in this series contains a unique solution. Determine whether the solution meets the stated goals.

The Account table was created by using the following Transact-SQL statement:

```
CREATE TABLE Account
   AccountNumber int NOT NULL,
    ProductCode char(2) NOT NULL,
    Status tinyint NOT NULL,
    OpenDate date NOT NULL,
    CloseDate date,
    Balance decimal(15,2),
   AvailableBalance decimal(15,2)
);
```

CEplus

There are more than 1 billion records in the Account table. The Account Number column uniquely identifies each account. The ProductCode column has 100 different values. The values are evenly distributed in the table. Table statistics are refreshed and up to date.

You frequently run the following Transact-SQL SELECT statements:

```
SELECT ProductCode, SUM(Balance) AS TotalSUM FROM Account WHERE ProductCode
<> 'CD' GROUP BY ProductCode;
SELECT AccountNumber, Balance FROM Account WHERE ProductCode = 'CD'
```

https://vceplus.com/

You must avoid table scans when you run the queries. You need to create one or more indexes for the table.

Solution: You run the following Transact-SQL statement:

CREATE NONCLUSTERED INDEX IX_Account_ProductCode ON Account(ProductCode);

Does the solution meet the goal?

A. Yes B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference: Explanation:

References: https://msdn.microsoft.com/en-za/library/ms189280.aspx /

QUESTION 40

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

CEplus

You are developing a new application that uses a stored procedure. The stored procedure inserts thousands of records as a single batch into the Employees table.

Users report that the application response time has worsened since the stored procedure was updated. You examine disk-related performance counters for the Microsoft SQL Server instance and observe several high values that include a disk performance issue. You examine wait statistics and observe an unusually high WRITELOG value.

You need to improve the application response time.

Solution: You update the application to use implicit transactions when connecting to the database.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference: Explanation:

References: http://sqltouch.blogspot.co.za/2013/05/writelog-waittype-implicit-vs-explicit.html

QUESTION 41

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

You are developing a new application that uses a stored procedure. The stored procedure inserts thousands of records as a single batch into the Employees table.

Users report that the application response time has worsened since the stored procedure was updated. You examine disk-related performance counters for the Microsoft SQL Server instance and observe several high values that include a disk performance issue. You examine wait statistics and observe an unusually high WRITELOG value.

You need to improve the application response time.

Solution: You add a unique clustered index to the Employees table.

Does the solution meet the goal?

A. Yes

B. No

Correct Answer: A Section: (none) Explanation

Explanation/Reference: Explanation:

References: https://msdn.microsoft.com/en-us/library/ms190457.aspx

QUESTION 42

Note: This question is part of a series of questions that present the same scenario. Each question in this series contains a unique solution. Determine whether the solution meets the stated goals.

You are developing a new application that uses a stored procedure. The stored procedure inserts thousands of records as a single batch into the Employees table.

Users report that the application response time has worsened since the stored procedure was updated. You examine disk-related performance counters for the Microsoft SQL Server instance and observe several high values that include a disk performance issue. You examine wait statistics and observe an unusually high WRITELOG value.

You need to improve the application response time.

Solution: You replace the stored procedure with a user-defined function.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

CEplus References: https://msdn.microsoft.com/en-us/library/ms345075.aspx

QUESTION 43

Note: This guestion is part of a series of questions that use the same answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are developing an application to track customer sales. You create tables to support the application. You need to create a database object that meets the following data entry requirements:

Table name	Data entry requirements
Customers	Inserts must be grouped in a batch of Transact-SQL statements.
CustomerTransactions	Inserts must be grouped in a batch of Transact-SQL statements.
	Inserts must be grouped in a batch of Transact-SQL statements.
	All of the data modifications made must become a permanent part
Invoices	of the database if data entry is successful.
	All data entry modifications must be erased if an error occurs.
	Inserts must be grouped in a batch of Transact-SQL statements.
	All of the data modifications made must become a permanent part
Orders	of the database if data entry is successful.
	All data entry modifications must be erased if an error occurs.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. DDL trigger
- F. scalar-valued function
- G. table-valued function

Correct Answer: C Section: (none) Explanation

Explanation/Reference: Explanation:

References: https://msdn.microsoft.com/en-us/library/ms345075.aspx

QUESTION 44

You are experiencing performance issues with the database server.

https://vceplus.com/

You need to evaluate schema locking issues, plan cache memory pressure points, and backup I/O problems.

What should you create?

- A. a System Monitor report
- B. a sys.dm tran database transaction dynamic management view query
- C. an Extended Events session that uses Query Editor
- D. an Activity Monitor session in Microsoft SQL Management Studio.

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

References: https://msdn.microsoft.com/en-us/library/hh212951.aspx

QUESTION 45

CEnlu Note: This guestion is part of a series of guestions that use the same or similar answer choices. An answer choice may be correct for more than one guestion in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

You have a database named DB1. There is no memory-optimized filegroup in the database.

You have a table and a stored procedure that were created by running the following Transact-SQL statements:


```
CREATE TABLE Employee
    EmployeeId int NOT NULL PRIMARY KEY,
    FirstName varchar(20),
    LastName varchar(20),
    Status char(1),
    Address varchar(100),
    Department int NOT NULL
);
CREATE PROCEDURE uspSelectEmployeeDetails
    @LastName varchar(20)
AS
BEGIN
SELECT e.FirstName, e.LastName, d.DepartmentName
                                                   Eplus
FROM Employee e
JOIN Department d on e.DepartmentId = d.DepartmentId
WHERE e.Status = 'T' AND e.LastName = @LastName;
END;
```

The Employee table is persisted on disk. You add 2,000 records to the Employee table.

You need to create an index that meets the following requirements:

- Optimizes the performance of the stored procedure.
- Covers all the columns required from the Employee table.
- Uses FirstName and LastName as included columns.

Minimizes index storage size and index key size.

What should you do?

- A. Create a clustered index on the table.
- B. Create a nonclustered index on the table.
- C. Create a nonclustered filtered index on the table.
- D. Create a clustered columnstore index on the table.

https://vceplus.com/

E. Create a nonclustered columnstore index on the table.

F. Create a hash index on the table.

Correct Answer: B Section: (none) Explanation

Explanation/Reference: Explanation:

References: https://technet.microsoft.com/en-us/library/jj835095(v=sql.110).aspx

QUESTION 46

Background

You have a database named HR1 that includes a table named Employee.

You have several read-only, historical reports that contain regularly changing totals. The reports use multiple queries to estimate payroll expenses. The queries run concurrently. Users report that the payroll estimate reports do not always run. You must monitor the database to identify issues that prevent the reports from running.

You plan to deploy the application to a database server that supports other applications. You must minimize the amount of storage that the database requires.

Employee Table

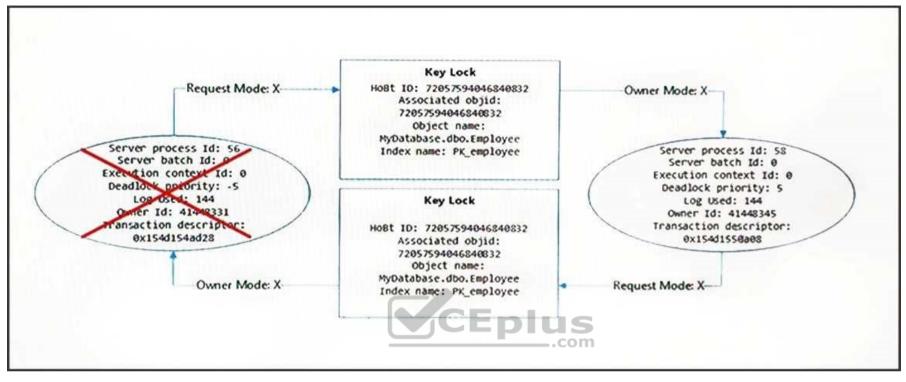
You use the following Transact-SQL statements to create, configure, and populate the Employee table:


```
CREATE TABLE dbo.Employee
    (EmployeeId INT PRIMARY KEY,
    LastName varchar(50).
    FirstName varchar(50),
    DepartmentId int,
    HireDate datetime.
    TerminationDate datetime,
    SupervisorId int,
    CostCenterNumber int,
    EmployeeStatus int,
    EmployeePayRate int)
) GO
CREATE INDEX IX 1 on dbo.Employee (LastName, FirstName, DepartmentId) INCLUDE (HireDate)
CREATE INDEX IX 2 on dbo.Employee (LastName) INCLUDE (EmployeeId, FirstName, DepartmentId)
CREATE INDEX IX 3 on dbo.Employee (LastName, FirstName) INCLUDE (DepartmentId)
CREATE INDEX IX 4 on dbo.Employee (LastName, FirstName) INCLUDE (HireDate, DepartmentId)
GO
INSERT INTO Employee (EmployeeID, LastName, CostCenterNumber) VALUES(1001, 'Employee A', 3001001)
INSERT INTO Employee (EmployeeID, LastName, CostCenterNumber) VALUES (1002, 'Employee B', 3001001)
GO
```

Application

You have an application that updates the Employees table. The application calls the following stored procedures simultaneously and asynchronously: • UspA: This stored procedure updates only the EmployeeStatus column.

• UspB: This stored procedure updates only the EmployeePayRate column.


The application uses views to control access to data. Views must meet the following requirements:

Allow user access to all columns in the tables that the view accesses.

Restrict updates to only the rows that the view returns.

Exhibit

You are analyzing the performance of the database environment. You discover that locks that are held for a long period of time as the reports are generated.

You need to generate the reports more quickly. The database must not use additional resources.

What should you do?

- A. Update the transaction level of the report query session to READPAST.
- B. Modify the report queries to use the UNION statement to combine the results of two or more queries.
- C. Set the READ_COMMITTED_SNAPSHOT database option to ON.
- D. Update the transaction level of the report query session to READ UNCOMMITTED.

Correct Answer: D Section: (none) Explanation Explanation/Reference: Explanation:

Transactions running at the READ UNCOMMITTED level do not issue shared locks to prevent other transactions from modifying data read by the current transaction. This is the least restrictive of the isolation levels.

References: <u>https://technet.microsoft.com/en-us/library/ms173763(v=sql.105).aspx</u>

QUESTION 47

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a database that is 130 GB and contains 500 million rows of data.

Granular transactions and mass batch data imports change the database frequently throughout the day. Microsoft SQL Server Reporting Services (SSRS) uses the database to generate various reports by using several filters.

You discover that some reports time out before they complete.

You need to reduce the likelihood that the reports will time out.

Solution: You partition the largest tables.

Does this meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 48

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution. After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a database that is 130 GB and contains 500 million rows of data.

https://vceplus.com/

Granular transactions and mass batch data imports change the database frequently throughout the day. Microsoft SQL Server Reporting Services (SSRS) uses the database to generate various reports by using several filters.

You discover that some reports time out before they complete.

You need to reduce the likelihood that the reports will time out.

Solution: You change the transaction log file size to expand dynamically in increments of 200 MB.

Does this meet the goal?

A. Yes

B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a database that is 130 GB and contains 500 million rows of data.

Granular transactions and mass batch data imports change the database frequently throughout the day. Microsoft SQL Server Reporting Services (SSRS) uses the database to generate various reports by using several filters.

You discover that some reports time out before they complete.

You need to reduce the likelihood that the reports will time out.

Solution: You create a file group for the indexes and a file group for the data files. You store the files for each file group on separate disks.

Does this meet the goal?

A. Yes

B. No

Correct Answer: A

Section: (none) Explanation

Explanation/Reference:

Explanation:

Consider creating two additional File Groups: Tables and Indexes. It is best not to put your stuff in PRIMARY as that is where SQL SERVER stores all of its data and meta-data about your objects. You create your Table and Clustered Index (as that is the data for the table) on [Tables] and all Non-Clustered indexes on [Indexes].

QUESTION 50

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a 3-TB database. The database server has 64 CPU cores.

You plan to migrate the database to Microsoft Azure SQL Database.

You need to select the service tier for the Azure SQL database. The solution must meet or exceed the current processing capacity.

Solution: You select the **Premium** service tier.

Does this meet the goal?

A. Yes B. No

Correct Answer: A	
Section: (none)	
Explanation	

Explanation/Reference: Explanation: Premium service is required for 3 TB of storage.

Single database DTU and storage limits

References: <u>https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu</u>

	Basic	Standard	
Maximum storage size	2 GB	1 TB	
Maximum DTUs	5	3000	
UESTION 51 lote: This question is part of a series of questions that present the same neet the stated goals. Some questions sets might have more than one co fter you answer a question in this section, you will NOT be able to return	prrect solution, while others might not	have a correct solution.	
ou have a 3-TB database. The database server has 64 CPU cores.			
ou plan to migrate the database to Microsoft Azure SQL Database.			
ou need to select the service tier for the Azure SQL database. The solution m	nust meet or exceed the current processing	ng capacity.	
olution: You select the Standard service tier.			
oes this meet the goal?			
. Yes			
3. No			
Correct Answer: B Section: (none) Explanation			

Explanation/Reference:

Explanation: Premium service is required for 3 TB of storage.

Single database DTU and storage limits

	Basic	Standard	Premium
Maximum storage size	2 GB	1 TB	4 TB
Maximum DTUs	5	3000	4000

References: https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu

QUESTION 52

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a 3-TB database. The database server has 64 CPU cores.

You plan to migrate the database to Microsoft Azure SQL Database.

You need to select the service tier for the Azure SQL database. The solution must meet or exceed the current processing capacity.

Solution: You select the Basic service tier.

Does this meet the goal?

A. Yes

B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

https://vceplus.com/

Explanation: Premium service is required for 3 TB of storage.

Single database DTU and storage limits

References: https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu

QUESTION 53

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

	Basic	Standard	Premium
Maximum storage size	2 GB	1 TB	4 TB
Maximum DTUs	.com	3000	4000

You have a table that has a clustered index and a nonclustered index. The indexes use different columns from the table. You have a query named Query1 that uses the nonclustered index.

Users report that Query1 takes a long time to report results. You run Query1 and review the following statistics for an index seek operation:

Index Seek (NonClustered)

Scan a particular range of rows from a nonclustered index.

Physical Operation	Index Seek
Logical Operation	Index Seek
Actual Execution Mode	Row
Actual Number of Rows	3571454
Actual Number of Batches	0
Estimated I/O Cost	0.0093577
Estimated Operator Cost	0.0107304 (0%)
Estimated CPU Cost	0.0013727
Estimated Subtree Cost	0.0107304
Estimated Number of Executions	1
Number of Executions	8
Estimated Number of Rows	CEDUIS
Estimated Row Size	19 B
Actual Rebinds	0
Actual Rewinds	0
Ordered	True
Node ID	100

You need to resolve the performance issue.

Solution: You drop the nonclustered index.

Does the solution meet the goal?

A. Yes B. NoB

Correct Answer: Section: (none)

Explanation

Explanation/Reference:

Explanation: We see Actual Number of Row is 3571454, while Estimated Number of Rows is 0. This indicates that the statistics are old, and need to be updated. QUESTION 54

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a table that has a clustered index and a nonclustered index. The indexes use different columns from the table. You have a query named Query1 that uses the nonclustered index.

Users report that Query1 takes a long time to report results. You run Query1 and review the following statistics for an index seek operation:

Index Seek (NonClustered)

Scan a particular range of rows from a nonclustered index.

Physical Operation	Index Seek
Logical Operation	Index Seek
Actual Execution Mode	Row
Actual Number of Rows	3571454
Actual Number of Batches	0
Estimated I/O Cost	0.0093577
Estimated Operator Cost	0.0107304 (0%)
Estimated CPU Cost	0.0013727
Estimated Subtree Cost	0.0107304
Estimated Number of Executions	1
Number of Executions	8
Estimated Number of Rows	CEDUIS
Estimated Row Size	19 B
Actual Rebinds	0
Actual Rewinds	0
Ordered	True
Node ID	100

You need to resolve the performance issue.

Solution: You defragment both indexes.

Does the solution meet the goal?

A. Yes B. NoB

Correct Answer: Section: (none)

Explanation

Explanation/Reference:

Explanation: We see Actual Number of Row is 3571454, while Estimated Number of Rows is 0. This indicates that the statistics are old, and need to be updated. QUESTION 55

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a table that has a clustered index and a nonclustered index. The indexes use different columns from the table. You have a query named Query1 that uses the nonclustered index.

Users report that Query1 takes a long time to report results. You run Query1 and review the following statistics for an index seek operation:

Index Seek (NonClustered)

Scan a particular range of rows from a nonclustered index.

Physical Operation	Index Seek
Logical Operation	Index Seek
Actual Execution Mode	Row
Actual Number of Rows	3571454
Actual Number of Batches	0
Estimated I/O Cost	0.0093577
Estimated Operator Cost	0.0107304 (0%)
Estimated CPU Cost	0.0013727
Estimated Subtree Cost	0.0107304
Estimated Number of Executions	1
Number of Executions	8
Estimated Number of Rows	CEnlus
Estimated Row Size	19 Bcom
Actual Rebinds	0
Actual Rewinds	0
Ordered	True
Node ID	100

You need to resolve the performance issue.

Solution: You update statistics for the nonclustered index.

Does the solution meet the goal?

A. Yes B. NoA

Correct Answer: Section: (none)

Explanation

Explanation/Reference:

Explanation: We see Actual Number of Row is 3571454, while Estimated Number of Rows is 0. This indicates that the statistics are old, and need to be updated.

QUESTION 56

You have a reporting application that uses a table named Table1. You deploy a new batch update process to perform updates to Table1.

The environment is configured with the following properties:

- The database is configured with the default isolation setting.
- The application and process use the default transaction handling.

You observe the application cannot access any rows that are in use by the process.

You have the following requirements:

Ensure the application is not blocked by the process.
 Ensure the application has a consistent view of the data
 Ensure the application does not read dirty data.

You need to resolve the issue and meet the requirements with the least amount of administrative effort.

What should you do?

- A. Enable the database for the ALLOW SNAPSHOT ISOLATION isolation level. Modify the application for the SERIALIZABLE isolation level.
- B. Enable the database for the READ COMITTED SNAPSHOT isolation level.
- C. Enable the application for the WITH (NOLOCK) hint.
- D. Enable the database for the ALLOW_SNAPSHOT_ISOLATION isolation level. Modify the application and the update process for the SNAPSHOT isolation level.

_.com

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Snapshot isolation must be enabled by setting the ALLOW_SNAPSHOT_ISOLATION ON database option before it is used in transactions. This activates the mechanism for storing row versions in the temporary database (tempdb).

READ COMMITTED is the default isolation level for SQL Server. It prevents dirty reads by specifying that statements cannot read data values that have been modified but not yet committed by other transactions. Other transactions can still modify, insert, or delete data between executions of individual statements within the current transaction, resulting in non-repeatable reads, or "phantom" data.

Incorrect Answers:

A: SERIALIZABLE is the most restrictive isolation level, because it locks entire ranges of keys and holds the locks until the transaction is complete. It encompasses REPEATABLE READ and adds the restriction that other transactions cannot insert new rows into ranges that have been read by the transaction until the transaction is complete.

References: https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server

QUESTION 57

You run the following Transact-SQL following statement: CREATE TABLE Customer(Customerid INT IDENITY (1, 1) PRIMARY KEY, Code CHAR(S) NOT NULL, FirstName VARCHAR (50) NOT NULL, LastName VARCHAR (50) NOT NULL

You observe that the application attempts to insert duplicate records.

You must ensure that duplicate records are not inserted and bulk insert operations continue without notifications.

Which Transact-SQL statement should you run?

- A. CREATE UNIQUE NONCLUSTERED INDEX IX Customer Code ON Customer (Code) WITH (ONLINE = OFF)
- B. CREATE UNIQUE INDEX IX CUSTOMER Code O Customer (Code) WITH (IGNORE DUP KEY = ON)
- C. CREATE UNIQUE INDEX IX Customer Code ON Customer (Code) WITH (IGNORE DUP KEY =OFF)
- D. CREATE UNIQUE NONCLUSTERED INDEX IX_Customer_Code ON Customer (Code)

Correct Answer: Section: (none)

Explanation

Explanation/Reference:

Explanation: We see Actual Number of Row is 3571454, while Estimated Number of Rows is 0. This indicates that the statistics are old, and need to be updated. E. CREATE UNIQUE NONCLUSTERED INDEX IX_Customer_Code ON Customer (Code) WITH (ONLINE = ON) B

CEplus

Explanation

Explanation/Reference:

Explanation:

IGNORE_DUP_KEY = { ON | OFF } specifies the error response when an insert operation attempts to insert duplicate key values into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the index is created or rebuilt. The option has no effect when executing CREATE INDEX, ALTER INDEX, or UPDATE. The default is OFF.

Incorrect Answers:

ONLINE = { ON | OFF } specifies whether underlying tables and associated indexes are available for queries and data modification during the index operation. The default is OFF.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-2017</u>

QUESTION 58

You suspect deadlocks on a database.

Which two trace flags in the Microsoft SQL Server error log should you locate? Each correct answer presents part of the solution.

NOTE: Each correct selection is worth one point.

A. 1204

B. 1211

C. 1222

D. 2528

E. 3205

Correct Answer: AC Section: (none) Explanation

Explanation/Reference:

Explanation:

Trace flag 1204 returns the resources and types of locks participating in a deadlock and also the current command affected.

Trace flag 1222 returns the resources and types of locks that are participating in a deadlock and also the current command affected, in an XML format that does not comply with any XSD schema.

References: https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-2017

QUESTION 59

https://vceplus.com/

You have the following stored procedure that is called by other stored procedures and applications: CREATE PROCEDURE UpdateCustomer @CustomerId INT AS BEGIN EXEC ProcessCustomer_Internal @CustomerId DECLARE @Status INT SELECT @Status = Status FROM Customer WHERE CustomerId = @CustomerId END

You need to modify the stored procedure to meet the following requirements:

- Always return a value to the caller.
- Return 0 if @Status is NULL.
- Callers must be able to use @Status as a variable.

Which two actions should you perform? Each correct answer presents part of the solution.

NOTE: Each correct selection is worth one point.

- A. Replace NULL values with 0. Add a PRINT statement to return @Status.
- B. Add a RETURN statement.
- C. Replace NULL values with 0. Add an output parameter to return @Status.
- D. Replace ${\tt NULL}$ values with 0. Add a SELECT statement to return <code>@Status</code>.
- E. Add a PRINT statement.
- F. Add a SELECT statement to return @Status.
- G. Add an output parameter to return @Status.

Correct Answer: BC Section: (none) Explanation

Explanation/Reference: Explanation:

There are three ways of returning data from a procedure to a calling program: result sets, output parameters, and return codes.

References: https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/return-data-from-a-stored-procedure?view=sql-server-2017

QUESTION 60

DRAG DROP

You need to implement triggers to automate responses to the following events:

- SQL Server logons
- Database schema changes
- Database updates

Which trigger types should you use? To answer, drag the appropriate trigger types to the appropriate scenarios. Each trigger type may be used once, more than once, or not at all. You may need to drag the split bar between panes or scroll to view content.

NOTE: Each correct selection is worth one point.

Select and Place:

Trigger types	Answer Area Epius	
LOGON	Scenario	Trigger type
INSTEAD OF INSERT	Prevent a user from establishing a session if they have an existing session	Trigger
AFTER INSERT	Insert into tables when data is inserted into a non-updatable view	Trigger
DDL	Insert the column name, table name, and user name when a column is added to a table	Trigger

Correct Answer:

Trigger types		Answer Area	
		Scenario	Trigger type
		Prevent a user from establishing a session if they have an existing session	LOGON
AFTER INSERT	0	Insert into tables when data is inserted into a non-updatable view	INSTEAD OF INSERT
		insert the column name, table name, and user name when a column is added to a table	DDL

https://vceplus.com/

www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

Section: (none) Explanation

Explanation/Reference:

Explanation:

Box 1: LOGON

Logon triggers fire stored procedures in response to a LOGON event. This event is raised when a user session is established with an instance of SQL Server.

Box 2: INSTEAD OF INSERT

An "INSTEAD of trigger" is executed instead of the original operation, and not combining with the operation. INSTEAD OF triggers override the standard actions of the triggering statement. It can be used to bypass the statement and execute a whole different statement, or just help us check and examine the data before the action is done.

Box 3: DDL

DDL statements (CREATE or ALTER primarily) issued either by a particular schema/user or by any schema/user in the database

Note:

You can write triggers that fire whenever one of the following operations occurs:

• DML statements (INSERT, UPDATE, DELETE) on a particular table or view, issued by any user

- DDL statements (CREATE or ALTER primarily) issued either by a particular schema/user or by any schema/user in the database
- Database events, such as logon/logoff, errors, or startup/shutdown, also issued either by a particular schema/user or by any schema/user in the database

References:

https://docs.oracle.com/cd/B19306_01/server.102/b14220/triggers.htm https://social.technet.microsoft.com/wiki/contents/articles/28152.t-sql-instead-of-triggers.aspx https://docs.microsoft.com/en-us/sql/relationaldatabases/triggers/logon-triggers?view=sql-server-2017

QUESTION 61

Note: this question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in the series. Information and details provided in a question apply only to that question.

You are developing an application to track customer sales.

You need to create an object that meets to following requirements:

- Run managed code packaged in an assembly that was created in the Microsoft.NET Framework and uploaded in Microsoft SQL Server.
- Run written a transaction and roll back if a failure occurs.
- Run when a table is created or modified.

What should you create?

- A. extended procedure
- B. CLR procedure
- C. user-defined procedure
- D. DML trigger
- E. DDL trigger
- F. scalar-valued function
- G. table-valued function

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

The common language runtime (CLR) is the heart of the Microsoft .NET Framework and provides the execution environment for all .NET Framework code. Code that runs within the CLR is referred to as managed code.

With the CLR hosted in Microsoft SQL Server (called CLR integration), you can author stored procedures, triggers, user-defined functions, user-defined types, and user-defined aggregates in managed code.

References: https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/introduction-to-sql-server-clr-integration

QUESTION 62

You are creating the following two stored procedures:

A natively-compiled stored procedure

An interpreted stored procedure that accesses both disk-based and memory-optimized tables

Both stored procedures run within transactions.

You need to ensure that cross-container transactions are possible.

Which setting or option should you use?

- A. the SET TRANSACTION READ COMMITTED isolation level for the connection
- B. the SERIALIZABLE table hint on disk-based tables

C. the set memory optimized elevate to snapshot=on option for the database

D. the set memory optimized elevate to snapshot=off option for the database

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation:

Provide a supported isolation level for the memory-optimized table using a table hint, such as WITH (SNAPSHOT). The need for the WITH (SNAPSHOT) hint can be avoided through the use of the database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT. When this option is set to ON, access to a memoryoptimized table under a lower isolation level is automatically elevated to SNAPSHOT isolation.

Incorrect Answers:

B: Accessing memory optimized tables using the READ COMMITTED isolation level is supported only for autocommit transactions. It is not supported for explicit or implicit transactions.

CEplus

References: https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transactions-with-memory-optimized-tables?view=sql-server-2017

QUESTION 63

You are developing a database reporting solution for a table that contains 900 million rows and is 103 GB.

The table is updated thousands of times a day, but data is not deleted.

The SELECT statements vary in the number of columns used and the amount of rows retrieved.

You need to reduce the amount of time it takes to retrieve data from the table. The must prevent data duplication.

Which indexing strategy should you use?

https://vceplus.com/

- A. a nonclustered index for each column in the table
- B. a clustered columnstore index for the table
- C. a hash index for the table
- D. a clustered index for the table and nonclustered indexes for nonkey columns

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Columnstore indexes are the standard for storing and querying large data warehousing fact tables. It uses column-based data storage and query processing to achieve up to 10x query performance gains in your data warehouse over traditional row-oriented storage.

A clustered columnstore index is the physical storage for the entire table.

Generally, you should define the clustered index key with as few columns as possible.

A nonclustered index contains the index key values and row locators that point to the storage location of the table data. You can create multiple nonclustered indexes on a table or indexed view. Generally, nonclustered indexes should be designed to improve the performance of frequently used queries that are not covered by the clustered index.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/indexes/columnstore-indexes-overview?view=sql-server-2017</u>

QUESTION 64

You use Microsoft SQL Server Profile to evaluate a query named Query1. The Profiler report indicates the following issues:

- At each level of the query plan, a low total number of rows are processed.
- The query uses many operations. This results in a high overall cost for the query.

You need to identify the information that will be useful for the optimizer.

What should you do?

- A. Start a SQL Server Profiler trace for the event class Performance statistics in the Performance event category.
- B. Create one Extended Events session with the sqlserver.missing_column_statistics event added.
- C. Start a SQL Server Profiler trace for the event class Soft Warnings in the Errors and Warnings event category.

D. Create one Extended Events session with the sqlserver.error_reported event added.

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

The Performance Statistics event class can be used to monitor the performance of queries, stored procedures, and triggers that are executing. Each of the six event subclasses indicates an event in the lifetime of queries, stored procedures, and triggers within the system. Using the combination of these event subclasses and the associated sys.dm_exec_query_stats, sys.dm_exec_procedure_stats and sys.dm_exec_trigger_stats dynamic management views, you can reconstitute the performance history of any given query, stored procedure, or trigger.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/event-classes/performance-statistics-event-class?view=sql-server-2017</u>

QUESTION 65 Background

You have a database named HR1 that includes a table named Employee.

You have several read-only, historical reports that contain regularly changing totals. The reports use multiple queries to estimate payroll expenses. The queries run concurrently. Users report that the payroll estimate reports do not always run. You must monitor the database to identify issues that prevent the reports from running.

You plan to deploy the application to a database server that supports other applications. You must minimize the amount of storage that the database requires.

Employee Table

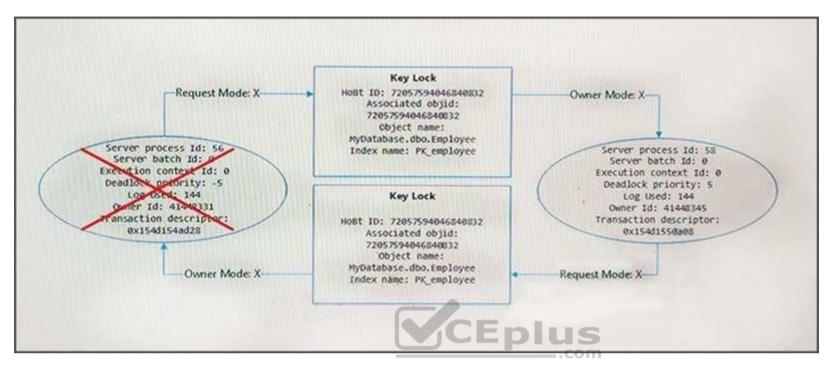
You use the following Transact-SQL statements to create, configure, and populate the Employee table:


```
CREATE TABLE dbo.Employee
    (EmployeeId INT PRIMARY KEY,
    LastName varchar(50),
    FirstName varchar(50),
    DepartmentId int,
    HireDate datetime,
    TerminationDate datetime,
    SupervisorId int,
    CostCenterNumber int,
    EmployeeStatus int,
    EmployeePayRate int)
) GO
CREATE INDEX IX 1 on dbo.Employee (LastName, FirstName, DepartmentId) INCLUDE (HireDate)
CREATE INDEX IX 2 on dbo.Employee (LastName) INCLUDE (EmployeeId, FirstName, DepartmentId)
CREATE INDEX IX 3 on dbo.Employee (LastName, FirstName) INCLUDE (DepartmentId)
CREATE INDEX IX 4 on dbo.Employee (LastName, FirstName) INCLUDE (HireDate, DepartmentId)
                                                CEplus
GO
                                                           ___.com
INSERT INTO Employee (EmployeeID, LastName, CostCenterNumber) VALUES(1001, 'Employee A', 3001001)
INSERT INTO Employee (EmployeeID, LastName, CostCenterNumber) VALUES(1002, 'Employee B', 3001001)
GO
```

Application

You have an application that updates the Employees table. The application calls the following stored procedures simultaneously and asynchronously: • UspA: This stored procedure updates only the EmployeeStatus column.

UspB: This stored procedure updates only the EmployeePayRate column.


The application uses views to control access to data. Views must meet the following requirements:

Allow user access to all columns in the tables that the view accesses.

Restrict updates to only the rows that the view returns.

Exhibit

You are analyzing the performance of the database environment. You discover that locks that are held for a long period of time as the reports are generated.

You need to generate the reports more quickly. The database must not use additional resources.

What should you do?

- A. Update all FROM clauses of the DML statements to use the IGNORE_CONSTRAINTS table hint.
- B. Modify the report queries to use the UNION statement to combine the results of two or more queries.
- C. Apply a nonclustered index to all tables used in the report queries.
- D. Update the transaction level of the report query session to READ UNCOMMITTED.

Correct Answer: D Section: (none) Explanation

Explanation/Reference: Explanation:

Transactions running at the READ UNCOMMITTED level do not issue shared locks to prevent other transactions from modifying data read by the current transaction. This is the least restrictive of the isolation levels.

References: https://technet.microsoft.com/en-us/library/ms173763(v=sql.105).aspx

QUESTION 66

Note: This guestion is part of a series of guestions that present the same scenario. Each guestion in the series contains a unique solution that might meet the stated goals. Some questions sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You have a database that is 130 GB and contains 500 million rows of data.

Granular transactions and mass batch data imports change the database frequently throughout the day. Microsoft SQL Server Reporting Services (SSRS) uses the database to generate various reports by using several filters.

You discover that some reports time out before they complete.

You need to reduce the likelihood that the reports will time out.

CEnl Solution: You increase the number of log files for the database. You store the log files across multiple disks.

Does this meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation: Instead, create a file group for the indexes and a file group for the data files.

QUESTION 67

Note: This guestion is part of a series of guestions that use the same scenario. For your convenience, the scenario is repeated in each guestion. Each question presents a different goal and answer choices, but the text of the scenario is exactly the same in each question in this series.

You have a database that contains the following tables: BlogCategory, BlogEntry, ProductReview, Product, and SalesPerson. The tables were created using the following Transact SQL statements:


```
CREATE TABLE BlogCategory
     CategoryID int NOT NULL PRIMARY KEY,
     CategoryName nvarchar (20)
);
CREATE TABLE BlogEntry
     Entry int NOT PRIMARY KEY,
     Entrytitle nvarchar (50),
     Category int NOT NULL FOREIGN KEY REFERENCES BlogCategory
(CategoryID)
);
CREATE TABLE dbo.ProductReview
     ProductReviewID IDENTITY(1,1) PRIMAR
     Product int NOT NULL,
     Review varchar (1000) NOT NULL
);
CREATE TABLE dbo. Product
(
     ProductID int Identity(1,1) PRIMARY KEY,
     Name varchar(1000) NOT NULL
);
CREATE TABLE dbo.SalesPerson
     SalesPersonID int IDENTITY(1,1) PRIMARY KEY,
     Name varchar (1000) NOT NULL,
     SalesID Money
)
```


You must modify the **ProductReview** Table to meet the following requirements:

- . The table must reference the ProductID column in the Product table
- Existing records in the **ProductReview** table must not be validated with the **Product** table.
- Deleting records in the Product table must not be allowed if records are referenced by the ProductReview table.

Changes to records in the **Product** table must propagate to the **ProductReview** table.

You also have the following database tables: Order, ProductTypes, and SalesHistory. The transact-SQL statements for these tables are not available.

You must modify the **Orders** table to meet the following requirements:

- Create new rows in the table without granting INSERT permissions to the table.
- Notify the sales person who places an order whether or not the order was completed.

You must add the following constraints to the SalesHistory table:

• a constraint on the **SaleID** column that allows the field to be used as a record identifier • a constant that uses the **ProductID** column to reference the **Product** column of the **ProductTypes** table • a constraint on the **CategoryID** column that allows one row with a null value in the column • a constraint that limits the **SalePrice** column to values greater than four

Finance department users must be able to retrieve data from the **SalesHistory** table for sales persons where the value of the **SalesYTD** column is above a certain threshold.

You plan to create a memory-optimized table named **SalesOrder**. The table must meet the following requirements:

- The table must hold 10 million unique sales orders.
- The table must use checkpoints to minimize I/O operations and must not use transaction logging.
 Data loss is acceptable.

Performance for queries against the SalesOrder table that use WHERE clauses with exact equality operations must be optimized.

You need to modify the environment to meet the requirements for the Orders table.

What should you create?

- A. an AFTER UPDATE trigger
- B. a user-defined function
- C. a stored procedure with output parameters
- D. an INSTEAD OF INSERT trigger

Correct Answer: D Section: (none)

Explanation

Explanation/Reference:

Explanation:

From Question: You must modify the Orders table to meet the following requirements:

- Create new rows in the table without granting INSERT permissions to the table.
- Notify the sales person who places an order whether or not the order was completed.

References: https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-server-2017

QUESTION 68

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You have a table that has a clustered index and a nonclustered index. The indexes use different columns from the table. You have a query named **Query1** that uses the nonclustered index.

Users report that **Query1** takes a long time to report results. You run **Query1** and review the following statistics for an index seek operation:

Index Seek (NonClustered)

Scan a particular range of rows from a nonclustered index.

Physical Operation	Index Seek
Logical Operation	Index Seek
Actual Execution Mode	Row
Actual Number of Rows	3571454
Actual Number of Batches	0
Estimated I/O Cost	0.0093577
Estimated Operator Cost	0.0107304 (0%)
Estimated CPU Cost	0.0013727
Estimated Subtree Cost	0.0107304
Estimated Number of Executions	1
Number of Executions	8
Estimated Number of Rows	CEDUIS
Estimated Row Size	19 B
Actual Rebinds	0
Actual Rewinds	0
Ordered	True
Node ID	100

You need to resolve the performance issue.

Solution: You rebuild the clustered index.

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

The query uses the nonclustered index, so improving the clustered index will not help. We should update statistics for the nonclustered index.

QUESTION 69

You need to create a view that can be indexed.

You write the following statement.

01	create view myView2
02	
03	as
04	select col1, col2
05	from dbo.test
06	go

What should you add at line 02?

A. with check_option

 $\boldsymbol{B}.$ with recompile

 $\boldsymbol{C}.$ with <code>view_metadata</code>

D. with schemabinding

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

The following steps are required to create an indexed view and are critical to the successful implementation of the indexed view:

1. Verify the SET options are correct for all existing tables that will be referenced in the view.

- 2. Verify that the SET options for the session are set correctly before you create any tables and the view.
- 3. Verify that the view definition is deterministic.
- 4. Create the view by using the WITH SCHEMABINDING option.
- 5. Create the unique clustered index on the view.

References: https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?view=sql-server-2017

QUESTION 70

You have a nonpartitioned table that has a single dimension. The table is named dim.Products.Projections.

The table is queried frequently by several line-of-business applications. The data is updated frequently throughout the day by two processes.

Users report that when they query data from **dim.Products.Projections**, the responses are slower than expected. The issue occurs when a large number of rows are being updated.

You need to prevent the updates from slowing down the queries.

What should you do?

- A. Use the NOLOCK option.
- B. Execute the DBCC UPDATEUSAGE statement.
- C. Use the max worker threads option.
- D. Use a table-valued parameter.
- E. Set SET ALLOW_SNAPSHOT_ISOLATION to ON.

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

The NOLOCK hint allows SQL to read data from tables by ignoring any locks and therefore not being blocked by other processes. This can improve query performance, but also introduces the possibility of dirty reads.

References: <u>https://www.mssqltips.com/sqlservertip/2470/understanding-the-sql-server-nolock-hint/</u>

QUESTION 71

Your company runs end-of-the-month accounting reports. While the reports run, other financial records are updated in the database.

Users report that the reports take longer than expected to run.

You need to reduce the amount of time it takes for the reports to run. The reports must show committed data only.

What should you do?

- A. Use the NOLOCK option.
- B. Execute the DBCC UPDATEUSAGE statement.
- C. Use the max worker threads option.
- D. Use a table-valued parameter.
- E. Set SET ALLOW_SNAPSHOT_ISOLATION to ON.
- F. Set SET XACT_ABORT to ON.
- G. Execute the ALTER TABLE T1 SET (LOCK ESCALATION = AUTO); statement.
- H. Use the OUTPUT parameters.

Correct Answer: E Section: (none) Explanation

Explanation/Reference:

Explanation: Snapshot isolation enhances concurrency for OLTP applications.

Once snapshot isolation is enabled, updated row versions for each transaction are maintained in tempdb. A unique transaction sequence number identifies each transaction, and these unique numbers are recorded for each row version. The transaction works with the most recent row versions having a sequence number before the sequence number of the transaction. Newer row versions created after the transaction has begun are ignored by the transaction.

References: https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server

QUESTION 72

You have multiple stored procedures inside a transaction.

You need to ensure that all the data modified by the transaction is rolled back if a stored procedure causes a deadlock or times out.

https://vceplus.com/ www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

What should you do?

- A. Use the NOLOCK option.
- **B. Execute the** DBCC UPDATEUSAGE **statement**.
- C. Use the max worker threads option.
- D. Use a table-valued parameter.
- E. Set SET ALLOW SNAPSHOT ISOLATION to ON.
- F. Set SET XACT ABORT to ON.
- G. Execute the ALTER TABLE T1 SET (LOCK ESCALATION = AUTO); statement.
- H. Use the OUTPUT parameters.

Correct Answer: F Section: (none) Explanation

Explanation/Reference:

CEplus Explanation: When SET XACT_ABORT is ON, if a Transact-SQL statement raises a run-time error, the entire transaction is terminated and rolled back.

References: https://docs.microsoft.com/en-us/sql/t-sql/statements/set-xact-abort-transact-sql?view=sql-server-2017

QUESTION 73

You run the following Transact-SQL statements:


```
CREATE TABLE Customers (

CustomerID INT NOT NULL IDENTITY PRIMARY KEY CLUSTERED,

CustomerName NVARCHAR (100) UNIQUE NOT NULL

)

CREATE TABLE Orders (

OrderID INT NOT NULL IDENTITY PRIMARY KEY CLUSTERED,

CustomerID INT NOT NULL REFERENCES Customers (CustomerID),

OrderDate DATE NOT NULL

)

CREATE VIEW v_CustomerOrder

AS SELECT

b.CustomerName, a.OrderID, a.OrderDate,

(SELECT COUNT(*) FROM Orders c WHERE c.CustomerID = a.CustomerID) AS CustomerOrderCount

FROM Orders a

INNER JOIN Customers b ON a.CustomerID = b.CustomerID DIUS
```

Records must only be added to the Orders table by using the view. If a customer name does not exist, then a new customer name must be created.

You need to ensure that you can insert rows into the Orders table by using the view.

- A. Add the **CustomerID** column from the **Orders** table and the WITH CHECK OPTION statement to the view.
- B. Create an INSTEAD OF trigger on the view.
- C. Add the WITH SCHEMABINDING statement to the view statement and create a clustered index on the view.
- D. Remove the subquery from the view, add the WITH SCHEMABINDING statement, and add a trigger to the Orders table to perform the required logic.

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

The WITH CHECK OPTION clause forces all data-modification statements executed against the view to adhere to the criteria set within the WHERE clause of the SELECT statement defining the view. Rows cannot be modified in a way that causes them to vanish from the view.

References: http://www.informit.com/articles/article.aspx?p=130855&seqNum=4

QUESTION 74

You run the following Transact-SQL statement: CREATE TABLE OrderLines(OrderLineID INT NOT NULL IDENTITY PRIMARY KEY CLUSTERED, OrderID INT NOT NULL, StockItemID INT NOT NULL, Description NVARCHAR(100) NOT NULL, Quantity INT NOT NULL, UnitPrice DECIMAL(18, 2) NULL)

There are multiple unique OrderID values. Most of the UnitPrice values for the same OrderID are different.

You need to create a single index seek query that does not use the following operators:

- Nested loop
- Sort
- Key lookup

Which Transact-SQL statement should you run?

A. CREATE INDEX IX_OrderLines_1 ON OrderLines (OrderID, UnitPrice) INCLUDE (Description, Quantity)

- B. CREATE INDEX IX OrderLines 1 ON OrderLines (OrderID, UnitPrice) INCLUDE (Quantity)
- C. CREATE INDEX IX OrderLines 1 ON OrderLines (OrderID, UnitPrice, Quantity)
- D. CREATE INDEX IX_OrderLines_1 ON OrderLines (UnitPrice, OrderID) INCLUDE (Description, Quantity)

Correct Answer: A Section: (none) Explanation

Explanation/Reference: Explanation:

https://vceplus.com/

..com

An index with nonkey columns can significantly improve query performance when all columns in the query are included in the index either as key or nonkey columns. Performance gains are achieved because the query optimizer can locate all the column values within the index; table or clustered index data is not accessed resulting in fewer disk I/O operations.

Note: All data types except text, ntext, and image can be used as nonkey columns.

Incorrect Answers:

C: Redesign nonclustered indexes with a large index key size so that only columns used for searching and lookups are key columns.

D: The most unique column should be the first in the index.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-2017</u>

QUESTION 75

You are developing an ETL process to cleanse and consolidate incoming data. The ETL process will use a reference table to identify which data must be cleansed in the target table. The server that hosts the table restarts daily.

You need to minimize the amount of time it takes to execute the query and the amount of time it takes to populate the reference table.

What should you do?

- A. Convert the target table to a memory-optimized table. Create a natively compiled stored procedure to cleanse and consolidate the data.
- B. Convert the reference table to a memory-optimized table. Set the **DURABILITY** option to **SCHEMA_AND_DATA**.
- C. Create a native compiled stored procedure to implement the ETL process for both tables.
- D. Convert the reference table to a memory-optimized table. Set the **DURABILITY** option to **SCHEMA_ONLY**.

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

If you use temporary tables, table variables, or table-valued parameters, consider conversions of them to leverage memory-optimized tables and table variables to improve performance.

In-Memory OLTP provides the following objects that can be used for memory-optimizing temp tables and table variables: • Memoryoptimized tables

Durability = SCHEMA_ONLY

Memory-optimized table variables

Must be declared in two steps (rather than inline): CREATE TYPE my type AS TABLE ...; , then

DECLARE @mytablevariable my type;.

References: https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/faster-temp-table-and-table-variable-by-using-memory-optimization? view=sal-server-2017

QUESTION 76

You are designing a stored procedure for a database named **DB1**.

The following requirements must be met during the entire execution of the stored procedure:

- The stored procedure must only read changes that are persisted to the database.
- SELECT statements within the stored procedure should only show changes to the data that are made by the stored procedure.

You need to configure the transaction isolation level for the stored procedure.

Which Transact-SQL statement or statements should you run?

- CEplus A. SET TRANSACTION ISOLATION LEVEL READ UNCOMMITED ALTER DATABASE DB1 SET READ COMMITED SNAPSHOT ON
- B. SET TRANSACTION ISOLATION LEVEL READ COMMITED ALTER DATABASE DB1 SET READ COMMITED SNAPSHOT OFF
- C. SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
- D. SET TRANSACTION ISOLATION LEVEL READ UNCOMMITED ALTER DATABASE SET READ COMMITED SNAPSHOT OFF

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

READ COMMITTED specifies that statements cannot read data that has been modified but not committed by other transactions. This prevents dirty reads. Data can be changed by other transactions between individual statements within the current transaction, resulting in nonrepeatable reads or phantom data. This option is the SQL Server default.

Incorrect Answers:

A, D: READ UNCOMMITTED specifies that statements can read rows that have been modified by other transactions but not yet committed.

References: https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/snapshot-isolation-in-sql-server

QUESTION 77

You are designing a solution for a company that operates retail stores. Each store has a database that tracks sales transactions. You create a summary table in the database at the corporate office. You plan to use the table to record the quantity of each product sold at each store on each day. Managers will use this data to identify reorder levels for products.

Every evening stores, must transmit sales data to the corporate office. The data must be inserted into the summary table that includes the **StoreID**, **ProductID**, **Qtysold**, **Totprodsales**, and **Datesold** columns.

You need to prevent duplicate rows in the summary table. Each row must uniquely identify the store that sold the product and the total amount sold for that store on a specific date.

What should you include in your solution?

- A. Create a unique constraint.
- B. Create a foreign key constraint to the **StoreID** column in each of the store tables.
- C. Create a rule and bind it to the StoreID column.
- D. Create a check constraint.
- E. Create a table-valued user-defined function.

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

You can use UNIQUE constraints to make sure that no duplicate values are entered in specific columns that do not participate in a primary key. Although both a UNIQUE constraint and a PRIMARY KEY constraint enforce uniqueness, use a UNIQUE constraint instead of a PRIMARY KEY constraint when you want to enforce the uniqueness of a column, or combination of columns, that is not the primary key.

Incorrect Answers:

D: CHECK constraints enforce domain integrity by limiting the values that are accepted by one or more columns.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-</u>2017

ach of the store tables.

QUESTION 78

You have the following stored procedure:

```
CREATE PROCEDURE AddNextNumber @Number INT
AS
BEGIN
SET ANSI_DEFAULTS ON
INSERT INTO Numbers (Number) VALUES (@Number)
END
```

The Numbers table becomes unavailable when you run the stored procedure. The stored procedure obtains an exclusive lock on the table and does not release the lock.

What are two possible ways to resolve the issue? Each correct answer presents a complete solution.

NOTE: Each correct selection is worth one point.

A. Remove the implicit transaction and the SET ANSI DEFAULTS ON statement.

B. Set the ANSI DEFAULT statement to OFF and add a COMMIT TRANSACTION statement after the INSERT statement.

C. Add a COMMIT TRANSACTION statement after the INSERT statement.

D. Remove the SET ANSI DEFAULTS ON statement.

Correct Answer: CD Section: (none) Explanation

Explanation/Reference:

Explanation:

SET ANSI_DEFAULTS is a server-side setting that the client does not modify. When enabled (ON), this option enables SET IMPLICIT_TRANSACTIONS (and some other options).

The SET IMPLICIT_TRANSACTIONS, when ON, the system is in implicit transaction mode.

This means that if @ @TRANCOUNT = 0, any of the following Transact-SQL statements begins a new transaction. It is equivalent to an unseen BEGIN TRANSACTION being executed first: ALTER TABLE, FETCH, REVOKE, BEGIN TRANSACTION, GRANT, SELECT, CREATE, INSERT, TRUNCATE TABLE, DELETE, OPEN, UPDATE, DROP.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/set-implicit-transactions-transact-sql?view=sql-server-2017</u>

QUESTION 79

You have a database that users query frequently.

The users report that during peak business hours, the queries take longer than expected to execute.

A junior database administrator uses Microsoft SQL Server Profiler on the database server to trace the session activities.

While performing the trace, the performance of the database server worsens, and the server crashes.

You need to recommend a solution to collect the query run times. The solution must minimize the impact on the resources of the database server.

What should you recommend?

- A. Increase the free space on the system drive of the database server, and then use SQL Server Profiler on the server to trace the session activities.
- B. Collect session activity data by using SQL Server Extended Events.
- C. Clean up tempdb, and then use SQL Server Profiler on the database server to trace the session activities.
- D. Collect performance data by using a Data Collector Set (DCS) in Performance Monitor.

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

SQL Server Extended Events has a highly scalable and highly configurable architecture that allows users to collect as much or as little information as is necessary to troubleshoot or identify a performance problem.

Extended Events is a light weight performance monitoring system that uses very few performance resources. Extended Events provides two graphical user interfaces (New Session Wizard and New Session) to create, modify, display, and analyze your session data.

References: https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events?view=sql-server-2017

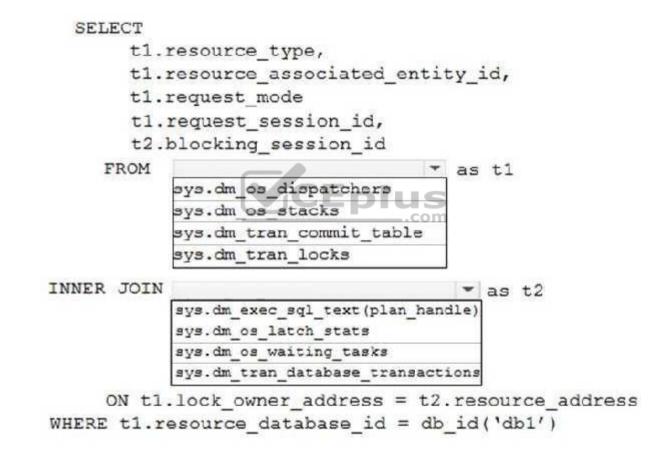
QUESTION 80

HOTSPOT

You have a Microsoft Azure SQL database.

Some queries take a long time to execute.

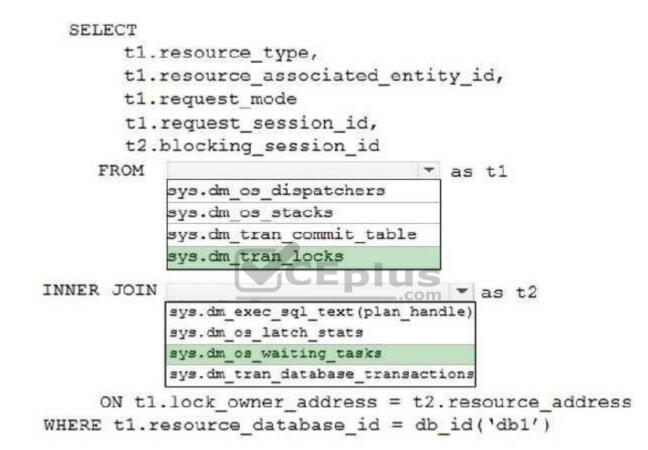
You need to identify whether any of the long-running queries prevent users from updating data in the database.



Which query should you execute? To answer, select the appropriate options in the answer area.

NOTE: Each correct selection is worth one point.

Hot Area:


Answer Area

Correct Answer:

Answer Area

Section: (none) Explanation

Explanation/Reference: Explanation:

Box 1: sys.dm_tran_locks

sys.dm_tran_locks returns information about currently active lock manager resources in SQL Server 2017. Each row represents a currently active request to the lock manager for a lock that has been granted or is waiting to be granted.

Box 2: sys.dm_os_waiting_tasks sys.dm_tran_locks.lock_owner_address is the memory address of the internal data structure that is used to track this request. This column can be joined the with resource_address column in sys.dm_os_waiting_tasks.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-tran-locks-transact-sql?view=sql-server-2017</u>

QUESTION 81

You have a relational data warehouse that contains 1 TB of data.

You have a stored procedure named usp sp1 that generated an HTML fragment. The HTML fragment contains color and font style.

You need to return the HTML fragment.

What should you do?

- A. Use the NOLOCK option.
- B. Execute the DBCC UPDATEUSAGE statement.
- C. Use the max worker threads option.
- D. Use a table-valued parameter.
- E. Set SET ALLOW_SNAPSHOT_ISOLATION to ON.
- F. Set SET XACT ABORT to ON.
- G. Execute the ALTER TABLE T1 SET (LOCK_ESCALATION = AUTO); statement.
- H. Use the OUTPUT parameters.

Correct Answer: G Section: (none) Explanation

Explanation/Reference:

Explanation:

A SQL Server stored procedure that you can call is one that returns one or more OUT parameters, which are parameters that the stored procedure uses to return data back to the calling application.

References: https://docs.microsoft.com/en-us/sql/connect/jdbc/using-a-stored-procedure-with-output-parameters?view=sql-server-2017

QUESTION 82

Note: This question is part of a series of questions that use the same or similar answer choices. As answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

You have a Microsoft SQL Server database named DB1 that contains the following tables:

Table name	Description
	The table has 25 columns.
TBL1	 The table will contain 10 million records
and southern	 Approximately 100,000 records will be inserted monthly.
	The table has 25 columns.
TBL2	 The table will contain 100,000 records.
	 The frequency of inserting, updating, and deleting records is low

You frequently run the following queries:

FROM TBL1 WHERE Column1 BETWEEN '01/01/2016' AND '30/04/2016'

SELECT Column5, Column6 FROM TBL2 WHERE Column2 = 'ABC156XYZ'

There are no foreign key relationships between TBL1 and TBL2.

You need to minimize the amount of time required for the two queries to return records from the tables.

What should you do?

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1. Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.
- C. Create a nonclustered index on TBL2 only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Create a nonclustered index

on TBL2.

- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.

H. Create an indexed view that combines columns from ${\tt TBL1}$ and ${\tt TBL2}.$

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

QUESTION 83

Note: This question is part of a series of questions that use the same or similar answer choices. As answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

You have a Microsoft SQL Server database named DB1 that contains the following tables:

Table name	Description CEDUS
TBL1	Column1 is configured as the primary key
	 The table will contain 20 million records.
	 The table will contain historical data.
	 Most queries of TBL1 return a high percentage of rows from the table with aggregates.
TBL2	 Column1 is configured as the primary key.
	 The table will contain 25 million records.
	• The frequency of updates and deleted to records in TBL2 is low.
	 Most queries of TBL2 return a high percentage of rows from the
	table with aggregates.

There are no foreign key relationships between TBL1 and TBL2.

You need to minimize the amount of time required for queries that use data from TBL1 and TBL2 to return data.

What should you do?

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1. Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.
- C. Create a nonclustered index on ${\tt TBL2}$ only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Create a nonclustered index on TBL2.
- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- H. Create an indexed view that combines columns from ${\tt TBL1}$ and ${\tt TBL2}.$

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

References: http://www.sqlservergeeks.com/sql-server-indexing-for-aggregates-in-sql-server/

QUESTION 84

Note: This question is part of a series of questions that use the same or similar answer choices. As answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

.com

You have a Microsoft SQL Server database named ${\tt DB1}$ that contains the following tables:

Table Name	Description	
TBL1	 The table will contain 10 million records. 	
	 The frequency of inserting, updating, and deleting records is low. 	
TBL2	 The table will contain 1 million records. 	
	 The frequency of inserting, updating, and deleting records is low. 	

Users frequently run the following query:

SELECT TBL1.Column2, TBL2.Column2, SUM(TBL1.Column3), SUM(TBL1.Column4 * TBL1.Column5 * (TBL2.Column4 - TBL2.Column3))
FROM TBL1
INNER JOIN TBL2 TBL1.Column1 = TBL2.Column1
GROUP BY TBL1.Column2, TBL2.Column2

Users report that the query takes a long time to return results.

You need to minimize the amount of time requires for the query to return data.

What should you do?

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1. Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.
- C. Create a nonclustered index on ${\tt TBL2}$ only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Create a nonclustered index on TBL2.
- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- H. Create an indexed view that combines columns from ${\tt TBL1}$ and ${\tt TBL2}.$

Correct Answer: H Section: (none) Explanation

Explanation/Reference:

QUESTION 85

Note: This question is part of a series of questions that use the same or similar answer choices. As answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series. Information and details provided in a question apply only to that question.

You have a Microsoft SQL Server database named DB1 that contains the following tables:

Table name	Description	
TBL1	 Column1 is configured as the primary key. 	
	 Column2 will store the year. 	
	 TBL1 only stores data for the year 2016. 	
	 The table will contain 1 million records. 	
TBL2	 Column1 is configured as the primary key. 	
	 Column2 will store the year. 	
	 TBL2 only stores data for the year 2015. 	
	 The table will contain 1 million records. 	

Users frequently run the following query. The users report that the query takes a long time to return results.

You need to minimize the amount of time required for the query to return data.

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1. Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.
- C. Create a nonclustered index on ${\tt TBL2}$ only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Create a nonclustered index on TBL2.
- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- H. Create an indexed view that combines columns from ${\tt TBL1}$ and ${\tt TBL2}.$

Correct Answer: D Section: (none) Explanation

Explanation/Reference:

Explanation:

A partitioned view is a view defined by a UNION ALL of member tables structured in the same way, but stored separately as multiple tables in either the same instance of SQL Server or in a group of autonomous instances of SQL Server servers, called federated database servers.

References: https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-2017#partitioned-views

QUESTION 86

Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution. Determine whether the solution meets the stated goals.

You need to create a stored procedure that updates the Customer, CustomerInfo, OrderHeader, and OrderDetail tables in order.

You need to ensure that the stored procedure:

Runs within a single transaction.

CEplus Commits updates to the Customer and CustomerInfo tables regardless of the status of updates to the OrderHeader and OrderDetail tables. Commits changes to all four tables when updates to all four tables are successful.

Solution: You create a stored procedure that includes the following Transact-SQL code:

BEGIN TRY BEGIN TRAN UPDATE Customer... Update CustomerInfo...

SAVE TRAN TR1

UPDATE OrderHeader... UPDATE OrderDetail... COMMIT TRAN END TRAN BEGIN CATCH IF XACT_STATE () = 1 COMMIT TRAN END CATCH

Does the solution meet the goal?

A. Yes B. No

Correct Answer: B Section: (none) Explanation

Explanation/Reference: Explanation:

Need to handle the case where the first two updates (OrderHeader, OrderDetail) are successful, but either the 3rd or the 4th (OrderHeader, OrderDetail) fail. Can add a variable in the BEGIN TRY block, and test the variable in the BEGIN CATCH block.

Note: XACT_STATE indicates whether the request has an active user transaction, and whether the transaction is capable of being committed. XACT_STATE =1: the current request has an active user transaction. The request can perform any actions, including writing data and committing the transaction.

References:

https://docs.microsoft.com/en-us/sql/t-sql/functions/xact-state-transact-sql

QUESTION 87

You have a view that includes an aggregate.

You must be able to change the values of columns in the view. The changes must be reflected in the tables that the view uses.

You need to ensure that you can update the view.

What should you create?

- A. a nonclustered index
- B. a schema-bound view

C. a stored procedure

D. an INSTEAD OF trigger

Correct Answer: B Section: (none) Explanation

Explanation/Reference:

Explanation:

Binds the view to the schema of the underlying table or tables. When SCHEMABINDING is specified, the base table or tables cannot be modified in a way that would affect the view definition.

Views or tables that participate in a view created with the SCHEMABINDING clause cannot be dropped unless that view is dropped or changed so that it no longer has schema binding.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql</u>

QUESTION 88

You are optimizing the performance of a batch update process. You have tables and indexes that were created by running the following Transact-SQL statements:

https://vceplus.com/ www.vceplus.com - Free Questions & Answers - Online Courses - Convert VCE to PDF - VCEplus.com

CREATE TABLE Invoices (InvoiceID INT NOT NULL IDENTITY PRIMARY KEY CLUSTERED, CustomerID INT NOT NULL, OrderID INT NULL, IsCreditNote BIT NOT NULL, IsCreditValidated BIT NOT NULL DEFAULT Ø

```
)
```

CREATE INDEX IX_invoices_CustomerID_Filter_IsCreditValidated ON Invoices (CustomerID) WHERE IsCreditValidated = 1

```
CREATE TABLE CreditValidation (
CreditValidationID INT NOT NULL IDENTITY PRIMARY KEY CLUSTERED,
CustomerID INT NOT NULL,
ValidationDate DATETIME NOT NULL
```

The following query runs nightly to update the isCreditValidated field:

```
UPDATE I
SET IsCreditValidated = 1
FROM Invoices I
WHERE EXISTS (SELECT Ø FROM CreditValidation CV WHERE CV.CustomerID =
I.CustomerID AND CV.ValidationDate >= I.InvoiceDate)
AND I.IsCreditNote = 1
AND I.IsCreditValidated = Ø
AND I.InvocieDate >= DATEADD (DD, -7, GETDATE () )
```

You review the database and make the following observations:

• Most of the IsCreditValidated values in the Invoices table are set to a value of 1.

- There are many unique InvoiceDate values.
- The CreditValidation table does not have an index.
- Statistics for the index IX_invoices_CustomerID_Filter_IsCreditValidated indicate there are no individual seeks but multiple individual updates.

You need to ensure that any indexes added can be used by the update query. If the IX_invoices_CustomerId_Filter_IsCreditValidated index cannot be used by the query, it must be removed. Otherwise, the query must be modified to use with the index.

Which three actions should you perform? Each correct answer presents part of the solution.

NOTE: Each correct selection is worth one point.

- A. Add a filtered nonclustered index to Invoices on InvoiceDate that selects where IsCreditNote= 1 and IsCreditValidated = 0.
- B. Rewrite the update query so that the condition for IsCreditValidated = 0 precedes the condition for IsCreditNote = 1.
- C. Create a nonclustered index for invoices in IsCreditValidated, InvoiceDate with an include statement using IsCreditNote and CustomerID.
- D. Add a nonclustered index for CreditValidation on CustomerID.
- E. Drop the IX_invoices_CustomerId_Filter_IsCreditValidatedIndex.

Correct Answer: ABE Section: (none) Explanation

Explanation/Reference:

Explanation:

A filtered index is an optimized nonclustered index especially suited to cover queries that select from a well-defined subset of data. It uses a filter predicate to index a portion of rows in the table. A well-designed filtered index can improve query performance as well as reduce index maintenance and storage costs compared with full-table indexes.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/indexes/create-filtered-indexes</u>

QUESTION 89

Note: This question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series.

Information and details provided in a question apply only to that question.

You have a Microsoft SQL Server database named DB1 that contains the following tables:

Table name	Description
TBL1	 -Column1 is configured as the primary key. -The table will contain 20 million records. -Most queries of TBL1 return a high percentage of rows from the table with aggregates.
TBL2	 -Column1 has been configured as the primary key. -The table will contain 25 million records. -The frequency of updates and deletes for TBL2 is low. -Most queries of TBL2 return a low percentage of rows and a high percentage of columns.

There are no foreign key relationships between TBL1 and TBL2.

You need to create a query that includes data from both tables and minimizes the amount of time required for the query to return data.

What should you do?

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1.

Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.

- C. Create a nonclustered index on TBL2 only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1.Create a nonclustered index on TBL2.
- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2.

Create a partitioned view that combines columns from TBL1 and TBL2.

H. Create an indexed view that combines columns from TBL1 and TBL2.

Correct Answer: G Section: (none) Explanation

Explanation/Reference: Explanation:

A partitioned view is a view defined by a UNION ALL of member tables structured in the same way, but stored separately as multiple tables in either the same instance of SQL Server or in a group of autonomous instances of SQL Server servers, called federated database servers.

Conditions for Creating Partitioned Views Include:

The select list

- All columns in the member tables should be selected in the column list of the view definition.
- The columns in the same ordinal position of each select list should be of the same type, including collations. It is not sufficient for the columns to be implicitly convertible types, as is generally the case for UNION.

Also, at least one column (for example <col>) must appear in all the select lists in the same ordinal position. This <col> should be defined in a way that the member tables T1, ..., Tn have CHECK constraints C1, ..., Cn defined on <col>, respectively.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-</u>

<u>sql</u>

QUESTION 90

Note: This question is part of a series of questions that use the same or similar answer choices. An answer choice may be correct for more than one question in the series. Each question is independent of the other questions in this series.

Information and details provided in a question apply only to that question.

Table name	Description
TBL1	 -Column1 is configured as the primary key. -The table will contain 20 million records. -The table will contain historical data. -Most queries of TBL1 return a high percentage of rows from the table with aggregates.
TBL2	 -Column1 has been configured as the primary key. -The table will contain 25 million records. -The frequency of updates and deletes to records in TBL2 is low. -Most queries of TBL2 return a low percentage of rows and a high percentage of columns.

You have a Microsoft SQL Server database named DB1 that contains the following tables:

There are no foreign key relationships between TBL1 and TBL2.

You need to minimize the amount of time required for queries that use data from TB1 and TBL2 to return data.

What should you do?

- A. Create clustered indexes on TBL1 and TBL2.
- B. Create a clustered index on TBL1.

Create a nonclustered index on TBL2 and add the most frequently queried column as included columns.

- C. Create a nonclustered index on TBL2 only.
- D. Create UNIQUE constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- E. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Create a nonclustered index on TBL2.
- F. Drop existing indexes on TBL1 and then create a clustered columnstore index. Create a nonclustered columnstore index on TBL1. Make no changes to TBL2.
- G. Create CHECK constraints on both TBL1 and TBL2. Create a partitioned view that combines columns from TBL1 and TBL2.
- Create a partitioned view that combines columns from TBL1 and TBL2
- H. Create an indexed view that combines columns from TBL1 and TBL2.

Correct Answer: G Section: (none) Explanation

Explanation/Reference:

Explanation:

A partitioned view is a view defined by a UNION ALL of member tables structured in the same way, but stored separately as multiple tables in either the same instance of SQL Server or in a group of autonomous instances of SQL Server servers, called federated database servers.

Conditions for Creating Partitioned Views Include: •

The select list

All columns in the member tables should be selected in the column list of the view definition.

The columns in the same ordinal position of each select list should be of the same type, including collations. It is not sufficient for the columns to be implicitly convertible types, as is generally the case for UNION.

Also, at least one column (for example <col>) must appear in all the select lists in the same ordinal position. This <col> should be defined in a way that the member tables T1, ..., Tn have CHECK constraints C1, ..., Cn defined on <col>, respectively.

References:

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql QUESTION 91

You have multiple queries that take a long time to complete.

You need to identify the cause by using detailed information about the Transact-SQL statements in the queries. The Transact-SQL statements must not run as part of the analysis.

Which Transact-SQL statement should you run?

- A. SET STATISTICS PROFILE OFF
- B. SET SHOWPLAN_TEXT OFF
- C. SET SHOWPLAN_ALL ON
- D. SET STATISTICS PROFILE ON

Correct Answer: C Section: (none) Explanation

Explanation/Reference:

Explanation:

SET SHOWPLAN_ALL ON causes Microsoft SQL Server not to execute Transact-SQL statements. Instead, SQL Server returns detailed information about how the statements are executed and provides estimates of the resource requirements for the statements.

_.com

Incorrect Answers:

D: When STATISTICS PROFILE is ON, each executed query returns its regular result set, followed by an additional result set that shows a profile of the query execution.

Displays the profile information for a statement. STATISTICS PROFILE works for ad hoc queries, views, and stored procedures.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/set-showplan-all-transact-</u>sql

QUESTION 92

You have a database with multiple tables. You must insert data into the tables by using views.

Which of the following two statements best describes an updatable view?

NOTE: Each correct selection is worth one point.

- A. The view must not include the primary key of the table.
- B. The view may include GROUP BY or HAVING statements.

C. The view may include a composite field.

- D. Each view must reference columns from one table.
- E. The view must not include subqueries.

Correct Answer: BD Section: (none) Explanation

Explanation/Reference:

Explanation: B: The columns being modified must not be affected by GROUP BY, HAVING, or DISTINCT clauses.

D: Any modifications, including UPDATE, INSERT, and DELETE statements, must reference columns from only one base table.

Incorrect Answers: A: Primary keys are allowed.

C: The columns cannot be derived in any other way, such as through the following: A computation. The column cannot be computed from an expression that uses other columns.

E: The restrictions apply to any subqueries in the FROM clause of the view, just as they apply to the view itself.

References: <u>https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-</u>2017

QUESTION 93

You manage a database that supports an Internet of Things (IoS) solution. The database records metrics from over 100 million devices every minute. The database requires 99.995% uptime.

The database uses a table named Checkins that is 100 gigabytes (GB) in size. The Checkins table stores metrics from the devices. The database also has a table named Archive that stores four terabytes (TB) of data. You use stored procedures for all access to the tables. You observe that the wait type PAGELATCH_IO causes large amounts of blocking. You need to resolve the blocking issues while minimizing downtime for the database.

Which two actions should you perform? Each correct answer presents part of the solution.

- A. Convert all stored procedures that access the Checkins table to natively compiled procedures.
- B. Convert the Checkins table to an In-Memory OLTP table.
- C. Convert all tables to clustered columnstore indexes.
- D. Convert the Checkins table to a clustered columnstore index.

Correct Answer: AB Section: (none) Explanation

Explanation/Reference:

Explanation:

Natively compiled stored procedures are Transact-SQL stored procedures compiled to native code that access memory-optimized tables. Natively compiled stored procedures allow for efficient execution of the queries and business logic in the stored procedure.

SQL Server In-Memory OLTP helps improve performance of OLTP applications through efficient, memory-optimized data access, native compilation of business logic, and lock- and latch free algorithms. The In-Memory OLTP feature includes memory-optimized tables and table types, as well as native compilation of Transact-SQL stored procedures for efficient access to these tables.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/natively-compiled-stored-procedures https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/memory-optimized-tables</u>

QUESTION 94

Note: This question is part of a series of questions that use the same or similar answer choices. An Answer choice may be correct for more than one question in the series. Each question independent of the other questions in this series. Information and details provided in a question apply only to that question.

You are a database developer for a company. The company has a server that has multiple physical disks. The disks are not part of a RAID array. The server hosts three Microsoft SQL Server instances. There are many SQL jobs that run during off-peak hours.

You must monitor and optimize the SQL Server to maximize throughput, response time, and overall SQL performance.

You need to examine delays in executed threads, including errors with queries and batches.

What should you do?

- A. Create a sys.dm_os_waiting_tasks query.
- B. Create a sys.dm_exec_sessions query.
- C. Create a Performance Monitor Data Collector Set.
- D. Create a sys.dm_os_memory_objects query.
- E. Create a sp_configure 'max server memory'query.
- F. Create a SQL Profiler trace.
- G. Create a sys.dm_os_wait_stats query.
- H. Create an Extended Event.

Correct Answer: G Section: (none) Explanation

Explanation/Reference:

Explanation:

sys.dm_os_wait_stats returns information about all the waits encountered by threads that executed. You can use this aggregated view to diagnose performance issues with SQL Server and also with specific queries and batches.

Incorrect Answers:

A: sys.dm_os_waiting_tasks returns information about the wait queue of tasks that are waiting on some resource.

References: <u>https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql</u>

QUESTION 95

You have a view that includes an aggregate.

You must be able to change the values of columns in the view. The changes must be reflected in the tables that the view uses.

You need to ensure that you can update the view.

What should you create?

- A. a DML trigger
- B. a schema-bound view
- C. a stored procedure
- D. a DDL trigger

Correct Answer: A Section: (none) Explanation

Explanation/Reference:

Explanation:

When you create a view, you must obey the following conditions in order to make the view updateable:

• The columns being modified in the view have to directly reference the underlying table columns. As a consequence, the view's columns being modified cannot be the result of an aggregate function or a computed column.

The only way to make data changes on a non-updateable view is by using INSTEAD OF DML triggers. This way you can use procedural code to overcome the limitation.

References: <u>https://www.mssqltips.com/sqlservertip/5984/sql-server-trigger-on-view-example/</u>

QUESTION 96

You have a Microsoft Azure SQL Database. You enable Query Store for the database and configure the store to use the following settings:

- SIZE_BASED_CLEANUP_MODE = OFF
- STALE_QUERY_THRESHOLD_DAYS = 60
- MAX_STORAGE_SIZE_MB = 100
- QUERY_CAPTURE_MODE = ALL

You use Azure Query Performance Insight to review queries. You observe that new queries are not displayed after 15 days and that the Query Store is set to readonly mode.

If the Query Store runs low on data space, the store must prioritize queries that run regularly or queries that consume applicant resources.

You must set the Query Store to read_write mode and determine the performance of queries from the past 60 days.

Which three actions should you perform? Each correct step presents part of the solution.

NOTE: Each correct selection is worth one point.

- A. Set the value of the CLEANUP_POLICY setting to (STALE_QUERY_THRESHOLD_DAYS = 75)
- B. Set the value of the QUERY_CAPTURE_MODE setting to AUTO
- C. Increase the value for the MAX_STORAGE_SIZE_MB setting
- D. Set the value of the SIZE_BASED_CLEANUP_MODE setting to AUTO
- E. In the Azure portal, navigate to Query Performance Insight. Use the Custom tab to select a period of 2 months.

Correct Answer: BCD Section: (none) Explanation

Explanation/Reference:

Explanation:

B: Capture mode:

All – Captures all queries. This is the default option.

Auto – Infrequent queries and queries with insignificant cost are ignored. (Ad hoc recommended) None – Query Store stops capturing new queries.

C: Max Size (MB): Specifies the limit for the data space that Query Store can consume within the database. This is the most important setting that directly affects operation mode of the Query Store.

While Query Store collects queries, execution plans and statistics, its size in the database grows until this limit is reached. When that happens, Query Store automatically changes the operation mode to read-only and stops collecting new data. You should monitor this closely to make sure you have sized the store appropriately to contain the full history you'd like to retain.

D: Size Based Cleanup Mode: Specifies whether automatic data cleanup will take place when Query Store data size approaches the limit.

It is strongly recommended to activate size-based cleanup to makes sure that Query Store always runs in read-write mode and collects the latest data.

References:

https://docs.microsoft.com/en-us/sql/relational-databases/performance/best-practice-with-the-query-store

